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INTRODUCTION 

In Texas the Lower Cretaceous was deposited on an extensive broad, flat 

platform which extended from the Stuart City shelf margin on the downdip or 

seaward side, to the area of Abilene in North Texas, on the updip or landward 

side (fig. 1). Shallow-water shelf carbonate deposition, which took place over 

an area of more than 160 thousand square miles, was influenced by three major 

structural elements-- the more rapidly subsiding McKnight and North Texas/Tyler 

Basins and the more positive Llano uplift. Depositional patterns on this plat­

form were controlled by these structural elements as they affected deposition by 

a transgressing sea. The carbonates observed on this field trip in the Austin 

area were most affected by the positive Llano uplift and the subsiding North 

Texas/Tyler basin. 

Lower Cretaceous rocks of Aptian and Albian age (fig. 2) are well exposed 

in the Central Texas area, in which the city of Austin lies. The section repre­

senting the Aptian and lower part of the Albian is characterized by a consider­

able amount of sandstone and shale interbedded with the more abundant limestone. 

Exposed here are the Sycamore Sandstone (equivalent to the subsurface Hosston 

Sandstone and Sligo Limestone), the Pearsall Formation (Hammett Shale and Cow 

Creek Limestone), and Glen Rose Limestone (characterized by significant quanti­

ties of shale). The terrigenous elastics were derived from the subareally ex­

posed Llano uplift. In contrast, rocks of the upper part of the Albian consist 

almost entirely of limestone and contain only minor amounts of shale. Ouri~g 

this time the Llano uplift was entirely covered and was not contributing ter­

rigenous sediment to the Fredericksburg/Edwards carbonates. 

This field trip in the Austin area (fig. 3) is design~d to illustrate and 

contrast the carbonate rock types which resulted from deposition on extremely 
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low-energy supratidal flats and marshes and intertidal flats, where marine 

conditions were very restricted, with those of high-energy open-marine condi­

tions, where grainstone bars and rudist banks were abundant. The low-energy 

restricted-marine carbonates are well illustrated at the first two stops in 

the Glen Rose Limestone. High-energy open-marine limestones of Fredericksburg 

age will be studied at the third stop in the Whitestone quarries northwest of 

Austin. 

The depositional processes and carbonate sediment types now accumulat­

ing in Florida Bay, the Florida back-reef track, and Cat Cays in the Bahamas 

are believed to represent closely those which took place in the Central Texas 

area during the Lower Cretaceous. 
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Figure 1. Paleogeography of the Lower Cretaceous of Texas. From Young, 1972. 
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STOPS 1 AND 2 

GLEN ROSE LOW-ENERGY RESTRICTED FACIES 

Lagoonal facies of the Glen Rose Formation will be examined at Stop 1, Mount 

Bonnell, and Stop 2, Cat Mountain (fig. 1). Both exposures illustrate the cyclic facies 

pattern and low-energy characteristics of the Glen Rose in the Austin area. 

The basic Glen Rose depositional cycle is an of flapping or progradational f acies 

sequence. The lowest unit of most cycles is a relatively thick (3-5 foot) marly wacke­

stone containing a diverse fossil assemblage. These marls are laterally persistant and 

were deposited subtidally in a broad lagoonal setting. Thin (l-3 foot) beds with 

numerous mudshrimp burrows (Ophiomorpha) may overlie the subtidal unit and are 

overlain by crossbedded packstone/grainstones or plant-bearing dolomitic mudstone/ 

wackstones. These intertidal and supratidal beds are laterally variable and represent 

several distinct depositional environments. The upper beds of the cycle may be 

dolomitic and are more resistant to weathering than the marls, giving the Glen Rose 

its characteristic stairstep topographic expression in the hill country west of Austin. 

Detailed examination of Glen Rose exposures reveals many departures from the 

basic cycle both in relative facies thickness and vertical sequence. As will be 

emphasized at both stops such variations are within the limits expected in a shallow 

lagoonal setting. 

The Holocene South Florida carbonates accumulating in Florida Bay and in 

back-reef environments of the associated reef tract (fig. 2) represent a modern facies 

analog for the Glen Rose Formation. Numerous papers haye described selected 

localities in South Florida and field trip guidebooks by Ginsburg (1964), Multer (1969, 

1975), and others have familiarized many sedimentologists with Florida carbonate 

environments. Graduate students from The University of Texas have also worked in 

this area in conjunction with several summer field courses. The generalized facies 

cross sections presented in Figures 3-6 are based on profiles, probes, and cores taken 

during these courses and incorporates information from the publications cited. 

6 
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Low-Energy Mud Banks and Islands 

Peterson Bank (fig. 3) is a low-energy mud bank in Florida Bay located in a 

relatively protected setting. Circulation is sufficent for development of clumps of 

the mat-forming coral Pontes divaricata. Cross Bank (Multer. 1969), another mud 

bank located in a more restricted area, has insufficient circulation for these corals. 

The mud bank or shoal f acies capped by lenses of winnowed grains and burrowed 

extensively by mudshrimp is a common Glen Rose facies. Intervals illustrating this 

sequence are present at Stop 1, Mt. Bonnell (figs. 7, 8; 6-12 feet and 16-22 feet), and 

at Stop 2, Cat Mountain (figs. 9, 10; 22.:.34 feet). 

Islands fringed by mangroves and having central ponds and marshes develop 

along the crests of many of the mud banks in central Florida Bay. Multer (1975) 

illustrates the distribution of surface facies on Crane Key as described by Pray (1966). 

Spy Key (fig. 4), a similar island cored by University of Texas graduate students, has a 

low-energy beach and shell berm developed along its windward margins and a central 

pond fringed by marshes. This facies tract bears remarkable similarity to the vertical 

sequence of beds observed in the Glen Rose at Mount Bonnell (figs. 7, 8; 25-32 feet) 

and at Cat Mountain (figs. 9, IO; 2-7 feet). The more protected or leeward margins 

of many of the island; in Florida Bay and along the Texas coast a.re bordered by 

marshes and intertidal mudflats. Sandy or shelly beaches are not developed in such 

areas. Facies sequences representing similar protected island settings are common in 

the Glen Rose and can be observed at Mt. Bonnell (figs. 7, 8; 45-50 feet) and Cat 

Mountain (figs. 9, 10; 46-51 feet). 

Moderate-Energy Banl<s 

Terms such as ''low-energy" and "high-energy" are always relative. With the 

possible exception of local storm deposits the Glen Rose beds were influenced by very 

low physical energies. The presence of some coated grains and monopleurid rudist 

biostromes suggest that more exposed areas may have been present in the Glen Rose 

lagoon. These facies are described as "moderate-energy banks" realizing that 

conditions were quite different from the processes that were associated with the 

Whitestone bem (Stop 3). 
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Whale Harbor (fig. 5) is a large tidal-delta complex located between Windley 

Key and Upper Matecumbe Key in south Florida. The ebb delta forms a shoal that is 

affected by moderate wave-energy conditions. This facies tract is similar to and 

intermediate in wave energy to the facies relationships described from Rodriguez 

Bank by Turmel and Swanson (1976), which has higher energy and more open 

conditions, and Matecumbe Keys tidal bank (Ebanks and Bubb, 1975), which has a more 

restricted setting. 

Strong tidal currents and an open setting influence Bethel Bank (fig. 6) and 

result in coarse sediments shielded by wave-resistant beds of Porites divaricata The 

four Florida locations cited above are similar in that they are prograding in the 

direction of wave approach by the accretion of organic mats of corals and red algae 

(Goniolithon). Branching corals and red algal beds are not associated with the Glen 

Rose Formation in the vicinity of Austin. The monopleurid rudist beds observed at 

Cat Mountain (figs. 9, 10; 11-14 feet) may represent a similar environment to the 

Whale Harbor ebb tidal-delta shoals. 

Glen Rose Facies Model 

Regional setting, facies characteristics and sequences suggest that the Glen 

Rose Formation near Austin was deposited in a restricted low-energy lagoon. Facies 

variations, especially in intertidal and supratidal facies, indicate that many shoals and 

islands were present in this lagoon (fig. 11). Lateral facies changes may be explained 

by differences in exposure to wave-energy and/or storms. 

Presence of abundant plant fossils and root-mottled marsh deposits suggest that 

the climate was more humid that that which prevailed during deposition of the 

overlying Edwards Formation. 
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Figure 1. Location of measured sections at stops land 2. 
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Figure 8. Representative facies from the low-energy tidal belt, Mt. Bonnell 
section (Stop 1). 

A. Miliolid wackestone (storm beds) interbedded with very finely laminated 
mudstone (algal mats and/or muddrapes). At 29.5 feet. 

B. Crossbedded miliolid grainstone with packstone laminae and micrite in­
traclasts. Environment: beach. At 31 feet. 

C. Burrowed arenaceous foraminifer-miliolid wackestone. Environment: 
lagoon. At 34 feet. 

D. Dolomitized, root-mottled, oxidized wackestone. Environment: marsh. 
At 40 feet. 

E. Poorly sorted miliolid intraclast packstone/grainstone. Environment: 
storm bed. At 44 feet. -

F. Burrowed miliolid wackestone/packstone. Environment: subtidal. At 
47.5 feet. 
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Figure 10. Representative facies from the low-energy tidal belt, Cat Mountain 
section (Stop 2). 

A. Bored hardground in a miliolid grainstone. Borings are filled by overly­
ing echinoid-mollusk packstone/grainstone. Environment: shoal. At 
9.5 feet. 

B. Monopleurid boundstone with a echinoid-miliolid wackestone matrix. 
Environment: moderate-energy subtidal bank. At 12.3 feet. 

C. Burrowed laminated mudstone (pond) underlying a crab burrowed miliolid 
wackestone (marsh). Crab burrows have dark outlines. At 18.5 feet. 

D. Miliolid-arenaceous foraminifer packstone. Environment: storm bed. 
At 32 feet. 

E. Interbedded miliolid mudstone and laminated packstone from lower 
shoreface of a beach sequence. At 36.5 feet. 

F. Laminated mumtone interbedded with miliolid wackestone/packstone. 
Environment: broad tidal flat. At 65 feet. 
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STOP 3 

WHITESTONE QUARRIES - HIGH-ENERGY TIDAL FACIES 

INTRODUCTION 

The Whitestone Lentil is an elongate grainstone belt which trends northwest 

along the Williamson-Travis County line (fig. l) and is exposed in a series of quarries 

near the town of White Stone along State Highway 1431 (fig. 2). The Whitestone Lentil 

is interpreted to be an ancient marine carbonate sand belt, analogous to Cat Cays, 

Great Bahama Bank, a modern marine carbonate sand belt (Ball, 1967). 

The Whitestone beds have been quarried for many years for building stone, 

known commercially as the "Cordova Shell" and the "Cordova Cream,11 and for 

crushed limestone (Rodda and others, 1966). Moore (1961, 1964) described the 

stratigraphy of the area and Moore and Martin (1966) interpreted the Whitestone 

Lentil as a high-energy carbonate deposit laid down in highly agitated, relatively 

clear, shallow-marine water. Other relevant studies have been published by Tucker 

(1962), Rogers (1967), Rose (1972), and Evans (1972). 

STRATIGRAPHY 

Moore (1964), in a study of the stratigraphy of the Fredericksburg Division in 

south-central Texas, recognized the oolite and pellet grainstone from the Cedar Park 

Limestone Member of the Walnut Formation and named it the Whitestone Limestone 

Member of the Walnut Formation (fig. 3). In the study area, the Whitestone Lentil is 

interpreted to be a genetic package composed of a bioclastic facies and oolite facies 

bounded above and below by local unconformities indicated by pholad borings. 

To the southwest or seaward side of the Whitestone Lentil is the Edwar~ 

Formation. The Cedar Park Limestone Member of the Walnut Formation underlies 

the Whitestone Lentil. This can be seen in quarries number one (fig. 2, 4d) and three 

which are on the seaward and middle part of the sand belt, but on the lagoonal side of 

the sand belt, quarry number five, the basal contact of the Whitestone Lentil is not 

exposed (fig. 5). 

The Keys Valley Marl Member of the Walnut Formation lies laterally to the 

northwest or lagoonal side of the Whitestone Lentil and also onlaps it (fig. 5), but it is 

not present southwest of the sand belt. 

27 
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PETROGRAPHY OF THE WHITESTONE LENTIL 

The Whitestone Lentil is divided into two facies, the upper oolite f acies and the 

lower Trigonia grains tone facies (figs. 4d, 5, 6). 

Upper Oolite Grainstone Facies 

This facies is composed primarily of pellet and oolite grainstone. Fossils 

include small rounded fragments of Trigonia sp., oysters and echinoids (Moore, 1964), 

and Turritella sp. These fossils occur as lag deposits and also are randomly 

scattered. Compound accretion sets and accretion cosets of crossbedding are the 

most abundant form of stratification (fig. 7). Less common forms are avalanche sets 

of crossbedding, ripple marks. and laminae. Common inverse festoon crossbedding 

occurs as spillover lobes on the lagoonal side of the sand belt (fig.5). Moore and 

Martin (1966) described the oolites in this facies as "very well-sorted ooliths and 

coated grains, averaging 0.2mm in diameter in a medium to coarsely crystalline, 

sparry calcite matrix" and "the nuclei of oolites are pellets or pelletoids, shell 

fragments, and unrecognizable recrystallized grains." 

Lower Trigonia Grainstone Facies 

This facies is composed mainly of unsorted to rounded Trigonia grainstone. 

Varying amounts of oolites and pellets occur in the matrix. The Trigonia grainstone 

tends to be more broken and current-oriented in the lower part of the facies than in 

the upper part. The most dominant and characteristic fossil is Trigonia sp., a 

shallow-water infauna! suspension feeder. Other fossils include Turritella sp., 

oysters, and a few fragments of rudists. Several accretionary-crossbedded oolite 

grainstone and lenses of gastropod pellet grainstone are interbedded with the Trigonia 

grainstone. Several traces of crossbedding were noticed, but most were destroyed by 

bio turba tion. 

DEPOSITIONAL SETTING OF THE WHITESTONE LENTIL 

Setting 
Ball (1967) described the setting of Cat Cays as parallel to the slope break that 

separates the Bahama platform from the deep water of Florida Straits. The top of 

this sand belt may be awash at low tide or very near the· surface and the water 

adjacent to the sand belt is ten to fifteen feet deep. He concluded that the setting of 
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Cat Cays is related to bottom topography. Bottom topography is believed to have 

controlled the setting beneath the Whitestone sand belt. 

The structural geology of the area of the Whitestone Lentil was discussed by 

Tucker (1962) and Rogers (1963). The lentil is in the Round Rock Syncline located 

between the Belton High to the north and the San Marcos Arch to the south (fig. 8). 

The water in this synclines was shallow and even shoaling in many areas, evidenced by 

a series of shoals in the limestone underlying the Whitestone Lentil. The Whitestone 

Lentil originated on top of these topographically high shoals and built seaward (fig. 9). 

Geometry 

The outcrop pattern of the Whitestone Lentil shows it to be a linear belt paral­

lel to a paleoslope break similar to that described by Ball (1967) for the Cat Cays sand 

belt. 

The cross section through the sand belt in the study area (fig. 10) shows it to 

thin from 18 feet (nine feet of oolite facies and nine feet of bioclastic facies) on the 

lagoonal side to ten or less feet on the seaward side. This thinning is due in part to 

the sand belt overlying a rudist shoal (fig. 9). The extreme edges of the sand belt are 

not exposed. The belt in this area is approximately one mile wide, and the length of 

the sand belt parallel to the slope break is reported by Moore (1964) as 40 miles. 

However, this length may include more than just the length of the Whitestone sand 

belt. 

Internal Structure 

Ball (1967) describes crossbedcling dipping toward the platform as the dominant 

internal structure of Cat Cays. He also describes large spillover lobes on the lagoonal 

side of the sand belt and smaller ones on the seaward side. Numerous small- and 

medium-scale ripple marks occur along its surface. The Whitestone Lentil has many 

of these same internal structural features. 

The seaward side of the Whitestone sand belt is divided into the upper 

shoref ace, represented by the oolite grains tone facies, and the lower shoreface, 

represented by the Trigonia grainstone facies. 

The upper shoreface has structures indicative of a high-energy environment. A 

current rose of this facies shows that sediment transport was the result of several 

types of currents of varying strengths acting on the sand belt (fig. 9). These include 
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tidal current acting in a northeast and southwest direction and longshore current 

moving along the strike of trend of the sand belt. The thinness of the sand belt 

allowed the carbonate sand to be reworked many times. The dominant feature is the 

accretionary crossbedding probably resulting from the migration of wave breaker bars 

during storms. In general, the sets of crossbedding are larger at the bottom than at 

the top of the upper shoref ace (fig. 7 c). This indicates more reworking near the top 

by lower-energy processes in shallower water. 

The effects of storms are well shown by large spillover lobes on the lagoon side 

of the sand belt (figs. 5, 10) and storm channels and smaller spillover lobes on the 

seaward side (fig. 7a). The spillover lobes indicate sediment movement over the sand 

belt (Ball, 1967). The channels are the result of storms as indicated by the large 

intraclast (up to 12 inches) lag deposits and gradation upward to large trough 

crossbedding. A large storm bed is exposed for approximately fifty feet along a wall 

in quarry number one (fig. 4a). This bed contains unsorted, rounded intraclasts of 

pellet grainstone and oolite grainstone (fig. 4b). Current-oriented palm leaves 

(fig. 4c) occur on the top of some bedding planes. Some other small channels occur in 

other parts of the sand belt (quarries two and three). Other features of the oolite 

facies are oscillation ripple laminae (fig. 7b), animal burrows, algae (fig. lld), and 

remnants of medium-scale ripples along the surface. 

The lower shoreface of the Trigonia grainstone facies indicates a lower energy 

with short periods of very high energy. The lower energy periods are represented by 

whole shells of Trigonia sp. and Turritella sp. in a pellet matrix. This facies was more 

thoroughly reworked by organisms than the oolite facies. However, the energy was 

strong enough to orient the shells of Turritella and to leave most of the Trigonia 

shells convex-side up. The higher energy periods in the lower shoref ace, resulting 

from storms, are indicated by unsorted, cm-rent-oriented shell hash layers and lenses 

of oolite grainstone. The latter must have been washed in from the upper shoreface. 

Channels which cut into the underlying limestone are filled with the Trigonia 

grainstone facies. Three of these channels occur in quarry number one (fig. 2, 4), on 

the seaward side and are evidenced by scouring of the pholad borings and fossil hash 

fill. 



31 

Composition and Texture 

The Cat Cays sand belt is composed of well-sorted oolites with a sparse mega­

fauna of gastropom and pelecypods in the oolite sand facies and more skeletal and 

pelletal facies in the slightly deeper water next to the sand belt. 

In the Whitestone Lentil the oolite facies contains well-sorted oolites and a 

sparse megafauna. The structures were little affected by bioturbation, and cross­

bedding was preserved. The unsorted, rounded intraclasts reflect the effect of 

storms. The Trigonia grainstone facies which was deposited in slightly deeper water 

contains more skeletal material and more pellets. The sorting of the skeletal 

material varies from unsorted, where the fossils are whole, to sorted, where the 

skeletal material was fragmented and reworked. Composition and texture are 

extremely good tools for delineating the two facies. 

SUMMARY AND DISCUSSION OF THE PALEOSETTING AND 

MODEL OF THE WHITESTONE LENTIL 

The limestone tongue underlying the Whitestone Lentil in the study area in­

dicates that this was an area of shoaling before the deposition of the Whitestone sand 

belt. The exposure of this limestone in quarry number one (fig. 2) shows two periods 

of shoaling separated by a lower energy subtidal phase (figs. 4, 9). The periods of 

shoaling are represented by rudi.st grainstone and pelletal oolite grainstone. The 

rudists are attached epifaunal suspension feeders which need a relatively high-energy 

environment and stable substrate on which to live. Therefore, the rudists were able 

to grow during periods when they could attach to a stable substrate or form one 

themselves. However, the rudist frameworks were torn up and reworked during 

periods of higher energy. The interlensing of the ruclist grainstone with other high­

energy deposits demonstrates these variations in the energy of this environment. A 

few small rudist bioherms are preserved (fig. 4d). 

The lower energy subtidal phase is shown by a nodular-bedded wackestone to 

grainstone. The energy in this environment was too low to permit rudists to live here 

and too weak to winnow out the micrite from the sediments. Figure 9 shows the 

interpreted relationship of the units in this tongue. 
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Before the deposition of the Whitestone Lentil, the area was subaerially exposed 

and lithified as indicated by pholad borings along the upper surface. 

This bored surface was later submerged and the Whitestone sand belt began to 

develop. The series of channels cut into the underlying surface line up along a 

northeast direction, which would indicate the slope of this surf ace to be southwest. 

The Whitestone deposition was initiated by a sequence of Trigonia grainstone facies, 

followed by the deposition of the oolite facies. Then through accretionary growth of 

the upper shoreface out and over the lower shoreface, the sand belt built seaward. It 

also built platformward by means of storm-transported sediment which accumulated 

in spillover lobes. 

The model of the Whitestone presented in Figures 9 and IO shows the vertical 

and lateral relationships in the sand belt. From the seaward side toward the lagoon, 

the following facies tract is represented: 1) the deeper-water facies of the Edwards 

"sea" borders the lower shoreface of the Whitestone sand belt; 2) the lower shoreface 

Trigonia grainstone facies consists of interlensing of high- and low-energy bioclastic 

sediments; 3) the upper shoreface comprises a series of wave-breaker bars whose 

upper surface was only a few feet below low tide and was at times in the swash zone; 

4) on the lagoonal side, spillover lobes developed from storm currents carrying 

sediment across the sand belt; 5) the Keys Valley Marl lagoonal sediments. Depo­

sition of the Whitestone was terminated by a relative fall in sea level which sub­

aerially exposed and lithified it. The flat, bored upper surface of the oolite grain­

stone could have resulted from lithification at the top of a ground-water table. 

The upper lithified surface was partly submerged again and bored by myriads of 

the pholad Lithophaga sp. (figs. lla, llb). Also, abundant oysters grew in tidal pools 

along this surface (fig. Ua), and some shallow channels were cut down into the hard 

surface (fig. llc). With further submergence and the development of a lower energy 

environment, the Keys Valley Marl overlapped the old Whitestone sand belt. 
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A. Hardground Surface of the Whitestone Lentil 
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Figure 11 
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