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ABSTRACT

Upward-coarsening sandstone units of the
Upper Cretaceous San Miguel Formation in
South Texas were deposited in wave-dominated
deltas during minor regressive phases,
periodically interrupting a major marine
transgression. Sediments accumulated in the
Maverick Basin within the Rio Grande
Embayment. Cross sections and sandstone maps
reveal that during deposition of the San Miguel,
the Maverick Basin consisted of two subbasins
that received sediments from the northwest and
the north.

Net-sandstone patterns show that the
thickest parts of San Miguel sandstone bodies
are generally strike oriented. Where preserved,
updip fluvial systems are indicated by dip-
aligned sandstone trends. San Miguel deltas
vary considerably in morphology and compose a
spectrum of wave-dominated delta types. Modern
analogs of San Miguel deltas include the Rhone,
Nile, Sao Francisco, Brazos, Danube, Kelantan,
Grijalva, and Senegal deltas. Sandstone geom-
etry ultimately depended on three primary
factors: (1) rate of sediment input, (2) wave
energy, and (3) rate of relative sea-level change.
Original delta morphology was determined by
all three factors, but the degree of reworking of
deltaic sediments after delta abandonment was
determined by wave energy and rate of
transgression.

The most common vertical sequences exhibited
by the subsurface San Miguel coarsen upward
from mudstone and siltstone to fine sandstone.
Burrows are the dominant structures. Rare
primary structures are small scale; large-scale
crossbeds are observed only in outcrop.
Strandplain or barrier-island facies sequences,
which prevail in most wave-dominated delta
deposits, are incomplete in the San Miguel. Typi-
cally, only the lower shoreface is preserved. Upper
parts of the sequences, which normally contain
large-scale primary structures, were destroyed by
marine reworking during subsequent transgres-
sion. Intense burrowing obliterated primary
structures in the upper parts of the truncated
shoreface sequences.

Most of the San Miguel sandstones are arkoses,
but the mineralogical composition of the
sandstones changes vertically. Generally within
each sandstone, quartz content increases upward
with increasing mean grain size. Cements include
sparry and poikilotopic calcite, quartz
overgrowths, feldspar overgrowths, illite rims,
and kaolinite. Porosity was eliminated principally
by two types of calcite cement, which tend to
cement completely the coarsest, best sorted, and
originally most porous zones of the San Miguel
sandstones. Zones of secondary porosity resulted

from leaching of shell material, calcite cement,
and feldspars. Laterally, the distribution of high
secondary porosity and calcite-cemented zones is
unpredictable.

INTRODUCTION

Little has been published about the Upper
Cretaceous terrigenous clastic formations of the
Maverick Basin in South Texas. In the last few
years, however, these formations have received
greater attention because of oil and gas
exploration and development. The San Miguel
Formation, one of the clastic units, was first
studied and named by Dumble (1892) for the San
Miguel Ranch on the Rio Grande above Eagle
Pass in Maverick County (fig. 1; Sellards and
others, 1932). Dumble correlated the San Miguel
with the Navarro Group of Central Texas, but
Stephenson (1931) later confirmed, primarily on
the basis of the molluscan fauna, that the San
Miguel was part of the Taylor Group.

The San Miguel Formation crops outin a few
small areas in Maverick County (fig. 1) and in the
subsurface extends to theeast, southeast, and south
atleastinto Atascosa, LaSalle,and WebbCounties,
where sandstones of the formation pinch out. Total
surface and subsurface area of the San Miguel
Formation in Texas is at least 6,300 mi? (16,000
km?). In the subsurface, the formation extends an
unknown distance into Mexico. On the basis of
vertical sequences, formation thickness, and envi-
ronmental relationships, the San Miguel Forma-
tion of this studyin Texasdoesnot appeartobe equi-
valent to the San Miguel in Coahuila, Mexico, de-
scribed by Caffey (1978). Detailed correlations of
electriclogs across the Rio Grande will benecessary
to clarify the stratigraphic relationships of Upper
Cretaceous units in Mexico and Texas.

Lewis (1977) presented a general model of San
Miguel deposition, but his work (1962, 1977)concen-
trated on hydrocarbon traps and stratigraphy. The
present study was conducted primarily to interpret
sedimentary facies and delineate depositional sys-
tems within the San Miguel Formation. Principal
objectives are to (1) describe the geometry of sand-
stone units, vertical sequences, and depositional
systems of the San Miguel Formation using de-
tailed cross sections and net-sandstone maps, (2)
interpret the Maverick Basin geologic history dur-
ing deposition of the San Miguel, including
transgressive-regressive cycles and time relation-
ships among individual sandstone units, (3) pro-
pose depositional models and modern and ancient
analogs of San Miguel systems, and (4) discuss the
influences of sediment characteristics and deposi-
tional patterns on porosity and, hence, oil and gas
occurrence.
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Figure 1. San Miguel study area showing well and outecrop locations. A-A’, B-B’, and C-C' are lines of dip cross
sections. X-X', Y-Y', and Z-Z' are lines of strike cross sections. Location system is Tobin Grid system. Eachgrid equals

one 7.5-minute quadrangle.

DATA AND
METHODOLOGY

The San Miguel Formation was studied
primarily using subsurface data, principally 375
electric logs. Well locations for 305 logs used to
construct net-sandstone maps are plotted in
figure 1; well names are listed in the Appendix.
Subsurface investigation also included analyses
of nine cores from the wells indicated on figure 1,
plus four cores from additional wells (Appendix)
not noted on the data base because of proximity to
other wells. Most cores were examined with the
binocular microscope, and textures, structures,
and mineralogy were described. Mineral
percentages, porosity, and grain sizes were
estimated and diagenetic features described for 41
thin sections from selected core intervals.

Outcrop study was limited because of poor
exposures; good exposures occur in only a small
part of the outerop belt (fig. 1). The best exposure of
vertical sequences occurs in a roadcut along U. S.
Highway 277 near its junction with Texas
Highway 1665, approximately 14 mi (22 km)north

of Eagle Pass in Maverick County. Along the Rio
Grande west of this roadcut, outcrops are
numerous but are highly weathered. A few small
outcrops on the Chittim Anticline (fig, 1) are also
highly weathered.

Ten preliminary regional cross sections were
constructed across the Maverick Basin to deter-
mine general sandstone distribution in the San
Miguel Formation. Electric logs were correlated
and individual sandstone units delineated. Some
of the sandstone units have been given different
informal names in various oil fields; in this study
the units are designated A, B, C, D,E, F, G, H, I,
and P (table 1).

After regional control was established, three
dip and three strike stratigraphic cross sections
(pls. I through VI; fig. 1) were constructed to show
detailed correlations necessary to determine
stratigraphic relationships and geometry of the
various sandstone units. Net-sandstone values
determined for the major sandstone units were
used to construct net-sandstone maps. San Miguel
depositional systems and basin history were
interpreted on the basis of these maps, the cross
sections, and the core data.



Table 1. Stratigraphy and informal names of San Miguel sandstone units.
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GEOLOGIC SETTING
OF THE MAVERICK BASIN

Basin History

The San Miguel Formation was deposited in
the Maverick Basin in the easternmost part of the
Rio Grande Embayment of the Gulf Coast Basin
(fig. 2). Walper (1977) inferred that the Rio Grande
Embayment originated as an aulacogen resulting
from the breakup of Pangaea, initiated during the
Triassic. By Late Jurassic the embayment had
become a distinct, structurally negative area
receiving sediments from basin margins. During
the Early Cretaceous, carbonate deposition began
on a broad shelf and dominated sedimentation
until the latest Cretaceous, when renewed
tectonism in source areas to the west and
northwest caused an influx of clastics into the
Maverick Basin and other parts of the Rio Grande
Embayment. By the late Eocene, the embayment
was filled, and centers of deposition had begun to
shift gradually southeastward into the Gulf Coast
Basin (Spencer, 1965).

Structural Framework

The Maverick Basin is separated from the East
Texas Embayment to the northeast by the San
Marcos Arch, which trends southeastward from
the Llano Uplift (fig. 2). During Cretaceous
sedimentation, this arch acted as a mildly positive
structure that subsided at a much slower rate than
adjacent basins (Loucks, 1976). The Maverick
Basin is bounded on the north by the Balcones
Fault Zone and on the northwest by the Devil’s
River Uplift. On the west, the basin is separated
from other basins of the Rio Grande Embayment
by the southeastward-trending Salado Arch.
Alignment of the arch is related to older trends

established by Paleozoic tectonic activity and
modified by folding associated with uplift of the
Sierra Madre Oriental during the Laramide
orogeny (Murray, 1961).

Several smaller structural features lie within
the Maverick Basin. The most prominent of these
is the southeastward-plunging Chittim Anticline,
which is clearly defined by the San Miguel outcrop
pattern (fig. 3). Folding occurred during latest
Cretaceous and Tertiary (Spencer, 1965) and thus
did not affect San Miguel sedimentation.

The Pearsall Ridge trends northeastward
through the eastern partof Zavala County and the
western half of Frio County (fig. 3). Thisridge was
probably mobile during Early Cretaceous (Rose,
1972) and remained a positive structural feature
throughout the Cretaceous (Lewis, 1977). San
Miguel deposition was affected by the ridge in that
the section thickens in the associated syncline
north of the ridge.

Few large faults occur in the Maverick Basin.
Because no thick shale sequences were deposited
on the stable carbonate platform, Upper Cretace-
ous clastics of the Maverick Basin do not display
large growth faults common in thick Gulf Coast
Tertiary clastics occurring farther gulfward. The
only major faults are those of the Charlotte Fault
system trending northeastward in the eastern
part of the basin and faults associated with the
Pearsall Ridge and Chittim Anticline (fig. 3). The
Charlotte Fault system occurs along strike and
may be a southwestward extension of the Mexia-
Talco Fault system of Central and northeast
Texas. The Charlotte and Mexia-Talco systems
both lie within the hinge zone of the Gulf Coast
Basin and are composed of en echelon grabens
(Murray, 1961). A large normal fault along the
north side of the Pearsall Ridge is downthrown to
the north, accentuating the adjacent syncline (fig.
3). Several other normal faults cut the Chittim
Anticline perpendicular to its axis.
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Figure 2. Structural framework of the Rio Grande
Embayment. Modified from Spencer (1965).

Numerous basaltic volecanic plugs, erroneously
described as “serpentine plugs,” occur within the
northern part of the Maverick Basin, especially in
Zavala County. The plugs are at the southern end
of an arcuate belt of plugs that extends approxi-
mately 250 mi (400 km) from Milam County south-
westward to Dimmit County (fig. 4). Most of the
volcanic activity took place during deposition of
the Austin Group and the lower part of the Taylor
Group. The distribution of the plugs suggests that
the intrusions followed faults through the
Precambrian and Paleozoic rocks of the Ouachita
complex, moved up along fracture zones related to
the Balcones Fault Zone, and finally penetrated
the Austin and Taylor deposits (Simmons, 1967).

Differential compaction of sediments around
the volcanic plugs produced complex structures
involving local domes and tensional graben
systems in overlying strata. Some San Miguel
depositional sequences thin over plugs, depending
on the rate of differential compaction and the
degree of bathymetric expression of the plug.

Upper Cretaceous Stratigraphy

The thickest Upper Cretaceous deposits within
the Gulf Coast Basin occur in the Rio Grande
Embayment (Murray, 1957). A generalized dip

section through the Maverick Basin (fig. 5) shows
most of the Upper Cretaceous stratigraphic units.
Carbonate sedimentation dominated during the
Cretaceous until the end of Austin deposition.
Terrigenous clastic sedimentation began to
prevail with deposition of the Taylor Group. While
shallow-water carbonates of the Anacacho
Formation accumulated updip around wvolcanic
islands (Luttrell, 1977), shelf muds of the Upson
Formation were deposited downdip. The three
youngest Cretaceous formations in the basin, the
San Miguel, Olmos, and Escondido, are
dominantly clastics derived from Late Cretaceous
tectonic uplifts to the west and northwest. The
Austin, Anacacho/Upson, San Miguel, Olmos,
and Escondido stratigraphic sequence prevails
throughout most of the Maverick Basin
subsurface. In the northernmost parts of the
basin, however, the Escondido Formation
(Navarro Group) directly overlies the Anacacho
Formation (lower Taylor Group). An uplift at the
end of Taylor deposition caused erosion of Olmos
and San Miguel strata along the northern margin
of the basin (Spencer, 1965).

SAN MIGUEL DEPOSITION

Cross sections and net-sandstone maps
indicate that there were two Maverick subbasins
in Texas during San Miguel deposition. These
subbasins were primarily depositional features
rather than prominent structural features and
accumulated two distinct series of sand deposits
supplied from two different sources. Stratigraphic
strike section Y-Y’ (fig. 6 and pl. V) best defines the
two subbasins, although some of the mapped
sandstone units are absent along the line of cross
section. Sandstone units A through I were
deposited in the western subbasin occupying
much of Maverick, Zavala, and Dimmit Counties,
Sandstone bodies labeled P were deposited in the
eastern subbasin centered in Frio County (fig. 7
and table 1). Strike section Z-Z’ (fig. 8 and pl. VI).
crosses the eastern subbasin closer to its
depocenter and indicates that sand supplied to the
two subbasins overlapped through time.

Sediment Sources

Sediments were delivered to the western
subbasin from the northwest (fig. 7) and probably
originated from tectonic activity in either
northern Mexico or New Mexico. Sediments were
introduced to the eastern subbasin from the north
and were probably derived from New Mexico.

Differences in sandstone mineralogy would
help identify different source areas for eastern and
western subbasins, but no cores or cuttings were
available for sandstone units in the eastern
subbasin. It is possible, however, that the fluvial
systems feeding the two principal Maverick
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subbasins originated in the sameregion or atleast
drained comparable terrain with similar rock
types and climates, so that mineralogy and other
sediment characteristics of the two may be
similar. Also, both areas may have received
volcanic debris either eroded from local volcanic
plugs or contributed directly by volcanic activity
in the northern part of the Maverick Basin.

Depositional Systems and Origin
of Sandstone Geometry—
General Comments

San Miguel sandstone units are deltaic facies
reworked to varying degrees by contemporaneous
marine processes and by physical and biological
processes during subsequent transgression. The
thickest parts of the sandstone units are strike
aligned, but most net-sandstone patterns also
indicate updip feeder systems.

Delta morphology is influenced by many
factors butis primarily the product of an interplay
between fluvial sediment input and reworking of
sediments by wave or tidal processes or both
(Coleman and Wright, 1975; Galloway, 1975). Dur-
ing their prograding stages, San Miguel deposi-
tional systems could have been broadly classed as
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Figure 4. Location of Cretaceous volcanic plugs,
Central and South Texas. Modified from Luttrell (1977).

high-destructive, wave-dominated deltas, which
were described by Fisher and others (1969) as
deltas in which “principal accumulation is as a
series of coastal barriers flanking the river mouth,
giving a cuspate to arcuate trend of the main sand
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units.” In these systems, wave energy dominates plot in the lower left third and near the triangle
over rate of sediment input and tidal energy. Con- border connecting the wave energy flux and
sequently, most of the sediments discharged into sediment input apexes. The San Miguel deposits
the marine environment are reworked along strike show no evidence of strong tidal influence; tidal
by wave processes, so that the main sand bodies range was probably microtidal, as it is along the
are strike oriented (fig. 9). present Texas Gulf Coast.

On Galloway’s (1975) delta-classification The preserved morphology of the San Miguel
triangle (fig. 10), most of the San Miguel systems sandstone bodies depended on three primary




KINNEY ! UVALDE! SEDIMENT, MEDM'\ 2
INPUT |

| |

. ‘ TG
SEDIMENT ! 4 )
i :;._I'L_ rd 1 \.<
e e mn e gy AR
i F FRIO
! |\ )
/ 4 i
| N
]
| \
t Y
-J
’/--m-—._.P'_,/'
\ /" EASTERN
\ < { SUBBASIN |
ol L - _____Avascosa
T T T T TLAsALLE, MCMULLEN

/ WESTERN
/* SUBBASIN

SAN MIGUEL
QUTCROP

Figure 7. Depocenters of San Miguel sandstone units and directions of sediment input. Depocenters are defined by
the 70-ft (21-m) net-sandstone contour.

Z y i
SW | | |
Dimmit Co 'zaég_k’ i Frio Co. | Atascosa Co.
| Ao
Tie Well Tie Well 0 20 Km 00
-~ A=A BT B 0 o
“'\ Escondido |
_—— i
T Tie Well 400
~ c-c¢
Olmos i = Eroded | | T 200
800
Top of
Son Miguel| — ]
San Miguel
12004
400
1600+
2000--600

Figure 8. Strike section Z-Z', simplified from plate VI. Line of cross section is shown in figure 1.



| /
I

e —
B o
Maxzimum sand axes

o} 10 km
[

o i—y
-— - [e] |0 mi
Depositional strike

Figure 9. Idealized net-sand pattern for a wave-
dominated delta. From Fisher (1969).

factors: (1) rate of sediment input, (2) wave energy
flux, and (3) rate of relative sea-level rise (absolute
sea-level rise or regional subsidence). All three
were important during delta building; the last two
also determined the degree of transgressive
reworking after delta abandonment. Wave energy
was probably fairly constant. Shelf gradient and
basin configuration, two important parameters
that determine wave energy, did not change
significantly during San Miguel deposition. Shelf
width, another possible influence upon wave
energy, varied with the distance that each delta
built toward the shelf edge, but most likely did not
result in significant differencesin wave energy for
the various San Miguel systems. Pulses in the
supply of sediments derived from areas to the west
and northwest during early phases of tectonic
activity beginning in Late Cretaceous probably
caused the rate of sediment input relative to the
rate of sea-level rise in the Maverick Basin to be
much more variable than wave energy. The degree
of wave reworking may have depended more on
the amount of time available for reworking than
on the absolute magnitude of wave energy.
Variable rates of sediment input relative to sea-
level rise produced a spectrum of San Miguel delta
types from highly wave-dominated deltas to wave-
influenced lobate deltas. For deltas to build, rate of
sediment input must have been greater than the
overall sea-level rise during San Miguel
deposition. However, the slower the rate of
sediment input or the higher the rate of sea-level
rise, (1) the slower the rate of progradation, (2) the
greater the reworking of deltaic sediments along
strike by marine processes, and (3) the greater the
strike-elongation of the deltaic sand body (fig. 11).
When the rate of relative sea-level rise or the rate
of sediment input changed so that sediment input
could no longer keep pace with the rise in sea level
and reworking by marine processes, then progra-
dation ceased and the delta was abandoned.

After delta abandonment, rate of relative sea-
level rise owing to subsidence or absolute sea-level
rise or both was important in determining the
degree of physical reworking of deltaic deposits by
marine processes. If transgression had been rapid,
there would have been little opportunity for
reworking of deltaic sediments by waves and
currents, and the delta would have retained most
of its original configuration. On the other hand, a
low rate of transgression would have caused the
deltaic sand bodies to remain much longer in
shallow, wave-influenced environments so that
original geometry could be altered more
extensively. These highly reworked sand bodies
could have evolved into the offshore bar and shelf
shoal systems postulated by Lewis (1977) for the
San Miguel. Sand available for these bar or shoal
systems, however, would have been relict, in situ
delta sand supplied to the areas by dip-oriented
fluvial systems rather than sand transported
totally along strike to the site of final deposition,
as suggested by Lewis.

Sandstone Units
of the Western Maverick Subbasin

Nine major San Miguel deltaic sandstone
units, designated “A” through “I” from oldest to
youngest, were delineated in the western subbasin
of the Maverick Basin. Dip section B-B’ (fig. 12
and pl. II) follows the central dip axis of the
western subbasin (figs. 1 and 7) and intersects all
nine units, including the main depocenters of
most. Dip section A-A’ (pl. I), parallel to but
southwest of B-B’ (fig. 1), intersects the
depocenters of sandstone units D, G, and I. Net-
sandstone maps were constructed for all the
western units except sandstone H, which was
truncated updip by erosion and was penetrated by
only a few wells.

Strike sections Y-Y’ and Z-Z' (figs. 6 and 8)
show that sand deposition began in the western
subbasin earlier than in the eastern subbasin.
Units A through E were deposited before any
deltaic sand was deposited in the part of the
eastern subbasin where the San Miguel section is
preserved.

Transgressive-Regressive Cycles

Although each sandstone unit is locally a
progradational sequence, the relative positions of
the deltas (fig, 12) indicate that two main trans-
gressive episodes (fig. 13) made up an overall
marine transgression (caused by an absolute sea-
level rise or regional subsidence) during San
Miguel deposition. Because of the overall rise in
relative sea level during each episode, succes-
sively younger deltas occurred progressively land-
ward, resulting in coastal onlap, as defined by
Vail and others (1977). The oldest units in the
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western subbasin, A and B, were superposed
farthest basinward. Sandstone unit C occurs
updip of A and B, and unit D, even farther updip.
These four units were deposited during the first
transgressive episode (fig. 14).

The second transgressive episode is docu-
mented by the relative positions of units E, F, G,
and H. Transgression following deposition of unit
E, which occurred basinward of D, began this
second cycle. Units F and G, which generally
occupy the same dip position, were deposited
updip of E. Of these four units, H was deposited
farthest updip and represented the last minor re-
gression preserved within the second transgres-
sive complex.

Deposition of unit I completed San Miguel
sedimentation in the western subbasin and was
followed by another major transgression before
progradation of Olmos delta systems. Thus, the

San Miguel Formation represents an overall
marine transgression (fig, 14) during which minor
deltaic regressions occurred locally within the
basin.

Sandstones A and B

The net-sandstone pattern for unit A, the oldest
San Miguel unit, shows that it is an elongate and
strike-aligned system trending north-
northeastward (fig. 15). Sandstone A, which is at
least 43 mi (70 km) long and 8 to 14 mi (13 to 22 km)
wide, is centered in the common corner of Zavala,
Frio, Dimmit, and La Salle Counties. Cross
section B-B’ (pl. IT) indicates that A is composed of
three sandstone bodies that together show a
migration basinward and represent a minor
regressive (deltaic) sequence. At the northern end
of sandstone unit A is vague evidence of an updip
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Figure 13. Two transgressive episodes of the San Miguel defined by the relative positions and order of deposition (1
through 8) of sandstone units. Locally regressive deltaic sandstones A, B, C, and D weredeposited during the first net
transgressive episode (a) and sandstones E, F, G, and H were deposited during the second transgressive episode (b)in
the western Mauverick subbasin. The two lobes of P are approximate time equivalents of F and G. Unit configurations
are indicated by the 70-ft (21-m) net-sandstone contour. Arrows indicate general landward shift in positions of
progressively younger deltas deposited during each net transgressive episode.
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Figure 14. Transgressive-regressive cycles shown by a schematic dip section through the axis of the western
Maverick subbasin. Based on the schematic convention of Frazier (1974).

feeder system trending westward. Because most of than A. Unit B is generally superposed on A but
the unit extends to the south of this feeder system, covers a greater area and extends farther south-
net longshore currents must have been from westward, almost to the Webb county line. The
northeast to southwest. Thickness of sandstone is strike pinch-outs of B are difficult to define
not uniform along the strike axis of A. The because of limited well control, but the unit is
sandstone is concentrated in three main “pods,” longer than the 54 mi (86 km) estimated between
or depocenters, the thickest of which is almost 130 10-ft (3.05-m) contours (0-ft contours are not shown
ft (40 m). for any of the net-sandstone maps constructed in

Sandstone B (fig. 16) is elongate and strike this study). Another similarity between A and Bis
aligned and, consequently, is similar to A. How- that the two principal sandstone bodies of B, like
ever, unit B trends slightly more to the northeast those of A, show evidence of a slight regression
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(pl. IT). Although sandstones A and B are essen-
tially coincident (the two thickest pods of B lie over
the two thickest of A), parts of B may have pro-
graded slightly farther than A. Perhaps the same
local structures were controlling deposition of A
and B. The major difference between A and B is
the lack of evidence of a feeder system for B,
although the fluvial systems feeding these deltas
were probably small and considerably reworked
during transgression, and fluvial sandstones
could be missed easily with the data base used.

Although sandstone units A and B are
interpreted as having deltaic origins, they were
probably subsequently reworked during trans-
gression into offshore bars, shoals, or the “break
in bottom topography” systems postulated by
Lewis (1977) for the most basinward San Miguel
sandstones. Correlations (pl. II) show that these
units pinch out updip onto what may have been a
sharply defined basin margin atthe time of deltaic
deposition. With transgression, however, the old
basin margin became a sharp break in bottom
topography where the deltaic sand was reworked,
although this break was probably not the shelf
edge, as Lewis suggested it was.

Sandstone C

Sandstone C, a local deltaic (regressive) system
deposited during the first transgressive episode of
the San Miguel, lies updip of the older A and B
sandstone units. This sandstone, known locally as
the “Elaine” or “Atlas” sandstone by petroleum
geologists, covers much of southern Zavala and
northern Dimmit Counties (fig. 17). The main
body of C, in which net sandstone is morethan 130
ft (40 m), is strike aligned and trends northeast-
ward, although itis not nearly as elongate as units
A and B. Sandstone C extends more than 45 mi
(72 km) along strike and 30 mi (48 km) in the dip
direction.

Net-sandstone patterns (fig. 17) indicate that
the shape of the main body of sandstone C is
arcuate to cuspate, This system shows no effects of
a dominant longshore-current direction and prob-
ably experienced little reworking after delta aban-
donment. The small strike-aligned depocenter on
the downdip side of unit C resulted from the last
building episode of the C delta, during which sand
was reworked along strike. On the updip side, net-
sandstone patterns indicate the position of a
fluvial system, although most of this system has
been eroded.

Sandstone D

Sandstone D, the unit deposited farthest updip
during the first San Miguel transgressive episode,
extends over much of the northern half of
Maverick and western Zavala Counties (fig. 18).
Known as the “basal San Miguel” sandstone



(table 1) in this updip part of the basin,
unit D is the principal sandstone that
crops out in Maverick County (see
“Vertical Sequences’). Much of the
updip parts of unit D, including the
fluvial system, has been eroded.

Delta system D was deposited in a
series of strike-oriented sandstone
bodies representing wvarious delta-
building stages (fig. 18). The thickest
part of the system, which has net- .
sandstone values of approximately 95 ft

(29 m), forms an arcuate trend in eastern . .

and central Maverick County, south
and east of the outcrop. The more
basinward parts of the delta are much 4
thinner. The thinner parts of the D
system probably resulted from rapid
progradation over the sand depocenter
of unit C where subsidence was less
significant than in surrounding shale.

Conlour Interval 10 F1 (305 M)

Sandstone E

Sandstone E, known as the “Big
Wells”” sandstone (table 1), is the least
extensive of all San Miguel sandstone
units. The system extends 35 mi (56 km) in the
strike direction and 18 mi (29 km) in the dip
direction (fig. 19). The main depocenter, which has
net sandstone up to 90 ft (27 m), lies in the
northeastern corner of Dimmit County and is
slightly updip of units A and B deposited during
the first transgressive episode (fig. 7). Deposition
of delta E farther basinward than D marked a
regression, which was then followed by the second
major transgressive episode of the San Miguel.

Sandstone E is a system composed of several
northeastward-trending, strike-aligned bodies
(fig. 19), which represent several delta-building
stages. A fluvial system may occur at the southern
end of the E unit, where the contours were
extended because of one well. If this feature is
actually part of a fluvial system, then the netlong-
shore current was from southwest to northeast, or
opposite that of unit A, which occupied a similar
location in the basin. This change in dominant
longshore-current direction is reasonable because
the Maverick Basin shoreline may have been
situated analogous to the present “coastal bend”
part of the South Texas coastline, where opposing
longshore currents converge. Changes in
shoreline configuration need not have been very
great to cause periodic reversals in the dominant
longshore-current direction.

Sandstone F'

The main depocenter of sandstone F, which lies
updip of unit E, is in the southwest quarter of
Zavala County (fig. 20), where almost 90 ft (27 m)
of net sandstone was deposited. The main,

Maverick Co.
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Figure 17. Net sandstone, San Miguel unit C.

northeastward-trending strike axis of the delta
system is atleast 60 mi (96 km) long. The conspicu-
ous cuspate shape of unit Findicatesan origin asa
wave-dominated delta with limited transgressive
reworking.

The mostly eroded updip part of unit F
represents the earliest phase of delta deposition.
As the delta built southeastward, it prograded
rapidly over an elongate, northeastward-trending
area before the main part of the system was
deposited farther basinward (fig. 20). The area
where rapid progradation occurred corresponds to
the principal sand depocenter of the underlying D
delta. The sands within unit D may have com-
pacted less readily than the surrounding shale,
resulting in a slower rate of subsidence and a more
stable substrate, which caused rapid progradation
and thinner deposition of unit F.

An alternate explanation for the area of
thinning is that it was a minor structural high
that affected sedimentation. Such a structural
feature would have been formed after deposition of
delta D, however, because D is thickest in that
area. There is no present structural evidence of an
elongate high, although such a feature probably
would have been masked by the younger Chittim
Anticline. Erosion as a cause of thinning is
unlikely because none of the sedimentary cycles
that thin in the area show signs of truncation.

Sandstone G

Sandstone G, known variously by petroleum
geologists as the “Torch,” the “King” (Lewis,
1962), the ““second San Miguel,’”’ or the
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“Fitzsimmons” sandstone (table 1), is a large,
northeastward-trending, strike-oriented system
covering western Zavala, western Dimmit, and
southern Maverick Counties (fig. 21). Sandstone G
extends atleast 60 mi (96 km) along strikein Texas
and into Mexico past the limits of this study. The
main depocenter, which has net-sandstone values
up to almost 140 ft (43 m), lies in southwestern
Zavala and northwestern Dimmit Counties.

Sandstone G, a small regressive delta
deposited during the second major San Miguel
transgressive episode, occupies almost the same
dip position as unit F (fig. 13b). Although the
thickest part of G lies southwest of the depocenter
of unit F, sandstone G overlaps much of the F
system and thins in the same area that F does
(fig. 20).

Sandstone G is a deltaic system which was
reworked along strike probably during both the
delta building and the transgression following
delta abandonment. The position of a feeder
system at the northern end of the sandstone unit
indicates that sand was transported to the
southwest by strong longshore currents.

Sandstone I

Sandstone I, known informally as the “first
San Miguel” sandstone (table 1), is the youngest of
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the San Miguel sandstone units in the western
subbasin of the Maverick Basin. This elongate,
northeastward-trending, strike-oriented system
occupies generally the same area as unit G (figs. 21
and 22). The outline formed by the 10-ft (3.05-m)
net-sandstone contour shows that system I is at
least 60 mi (96 km) long and 22 mi (35 km) wide.
The main sandstone body, which has maximum
net-sandstone values slightly greater than 80 ft
(24 m), extends almost to the Rio Grande; a few
thin sandstones possibly extend into Mexico.

A highly eroded older phase of system I lies
updip, analogous to that of unit F (fig. 20).
Although net-sandstone patterns in that updip
part of sandstone I were contoured with a
dominant dip alignment, data are too few to be
certain of the patterns. It is possible that the
updip part may have been reworked along strike
like the downdip younger part of the system.
After deposition of the updip part, delta I
prograded rapidly over the same stable
northeastward-trending area where thinning of
unit F occurred in eastern Maverick and western
Zavala Counties.

Because longshore transport was toward the
southwest, system I prograded primarily in that
direction. As with unit G, reworking by waves and
the strong longshore currents significantly
affected the final sandstone-body shape.




Sandstone Units
of the Eastern
Maverick Subbasin

San Miguel deltaic sand
deposition began later in the
eastern subbasin (at least where
San Miguel deposits are preserved)
than in the western subbasin of the
Maverick Basin. According to
regional correlations, the largest
eastern sandstone bodies (grouped
as P) are interpreted to be
stratigraphically equivalent to
units F and G of the western
subbasin (fig. 13b and pl. V). The
thickest sandstone body in unit P
is known by some geologists as the
“Olmos B” sandstone (table 1).
Detailed correlations, however,
show that unit P interfingers with
San Miguel deposits of the western
subbasin and is definitely older
than the Olmos. In addition,
subsurface correlations carried
from the Olmos section in
Atascosa County described by
Glover (1955) show that the P
sandstone bodies are older than
the Olmos B defined in that eastern
part of the Maverick Basin.

Unit P (fig. 23) is a composite of two main

Frio Co.
Zovala Co.

LaoSalle Co
-

=

m Core

Contour Interval 10 Ft (305 M)

0 25 Km
) / i 15 Mi

Figure 19. Net sandstone, San Miguel unit E.

Vertical Sequences

delta lobes (pls. I1I, V, and VI), which prograded
farther into the Maverick Basin than did their
western counterparts (fig. 13b). The P deltas were
probably more highly constructive and more
nearly lobate than were the western deltas.
Although the systems were wave influenced, the
rate of sediment input, which was from the
north, may have been greater than that for the
western subbasin, which received sediments
from the northwest. Another possible reason the
deltas of the P unit prograded farther than did
the western deltas was that the eastern subbasin
was closer to the San Marcos Arch, where
subsidence was much slower and relative sea
level more stable.

Cores available for study came from the C, D,
E, G, and I sandstone units of the San Miguel,
Unfortunately, only a few cores, which were taken
from only the main depocenters or the nearby
flanks of the units, were available for each unit.
Thus, core distribution did not allow observation
of lateral changes within the systems. Electric
logs did, however, document lateral changes
within each system, but they indicated great
similarities in vertical sequences of the various
sandstone units, especially in the main
depocenters.

Textures
The two main delta lobes of unit P, which

occupy most of Frio County (fig. 23), were
combined for net-sandstone mapping because it
is difficult to pick a boundary between the two
where the sandstones closely overlap.
Correlations show, however, that the older and
thicker of the two lobes composes most of the
western part of unit P. This older P lobe shows
the thickest single upward-coarsening sandstone
sequence of any San Miguel unit (pl. VI, Parker
#1-R Oppenheimer). The second lobe was
developed in the eastern side of the area covered
by unit P.

Both cores and electric logs indicate that the
sandstone bodies are dominated by upward-
coarsening cycles, such as shown in figure 24,
Figure 25illustrates the distribution of types oflog
patterns in sandstone G. Individual vertical
sequences in the depocenter of unit G predomi-
nantly show more than one upward-coarsening
cycle (log pattern A). Updipand downdip,however,
the sequences generally show single upward-
coarsening cycles (log pattern B). These upward-
coarsening cycles, multiple or single, either have a
sharp upper boundary or show a finer zone at the
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top that is slightly gradational into the shale
above. On the fringes of the system, sandstones
show either thin upward-coarsening sequences
(log pattern C) or thin symmetrical peaks on the
logs. This distribution of vertical sequences is
expected if the delta prograded in more than one
phase; the thickest “stack™ of cycles should be in
the depocenter. The other San Miguel sandstone
units, however, generally do not show multiplicity
of cycles but rather exhibit single upward-
coarsening cycles in the depocenters, as well as in
the peripheral parts of the sandstone bodies.
Upward-fining or blocky log patterns (log patterns
D), which suggest channel deposits, arecommonin
the area where net-sandstone contours indicate a
fluvial system (fig. 25).

Core study shows that the predominant
upward-coarsening cycles are reflected primarily
by a decrease upward in amount of clay rather
than a marked increase in mean “sand” grain
size. The mean “sand” grain size generally
coarsens from coarse silt at the bases of the cycles
to very fine or fine sand at the tops (fig. 24). Mean
grain size in all of the Wood #1 Weathers core is
within the very fine sand fraction, although the
base (not shown) of the upward-coarsening
sequence probably has a mean grain size of coarse
silt. Clay content decreases from high percentages
in the silty shale below the sandstone bodies to
essentially zero percent in the upper parts of the
upward-coarsening cycles (fig. 24). Clay is
distributed in wispy laminations, lenses, and
burrow-wall linings rather than disseminated
throughout.

Porosity, determined from thin section esti-
mates and core analyses, shows an overall upward
increase corresponding with the decrease in clay
content (fig. 24). Porosity generally ranges from ap-
proximately 10 percent upward to 25 to 30 percent.
Although most of the porosity is intergranular,
highest porosities occur in zones where shell frag-
ments and feldspar grains have been leached.
Original porosity was destroyed by calcite cemen-
tation in some zones, commonly the coarsest, most
well-sorted zones of the cycles (fig. 24). These
cemented zones exhibit low spontaneous potential
(SP) and high resistivity values on the electric log
(fig. 24). If only the SP curve is considered, such a
zone may be misinterpreted as a shale bed rather
than as a clean, well-sorted sandstone. Thin lime-
stone beds, which are sandy or silty micrites and
biomicrites, are also non-porous. Most limestone
beds are only 6 to 12 inches (15 to 30 ecm) thick and
are not recognizable on electric logs.

To summarize textural characteristics, the San
Miguel sandstones are very fine grained and
range from coarse siltstone to fine sandstone.
Although clay percentage ranges widely, sorting
is good to very good within the “sand” mode. Most
of the sand grains are angular to very angular
because silt and very fine sand are not easily
rounded. Many of the grains (quartz slivers and

feldspar crystals) are elongate and oriented
parallel or subparallel to bedding planes.

Sedimentary Structures

Cores from the San Miguel sandstone units
show that, throughout, burrows are the predomi-
nant structures. In the lower parts of the upward-
coarsening cycles, bioturbation was so intense
that individual burrows are indistinct. Burrows
are mostly horizontal (pl. VII-A) and generally
become more distinct upward. Where vertical
burrows (pl. VII-B) are present, they occupy the
coarsest grained parts of the section. Ophiomor-
pha (pl. VII-A and -B) is the most readily
recognized and one of the most common types of
burrow.

No large-scale primary structures were ob-
served in the cores. Sections not completely
churned by burrowing display horizontal and ir-
regular laminations that are the most abundant
primary structures. Small-scale crosslaminations,
however, are common in some of the cores. Thin
zones (6tol2inches, 15t030 cm)of horizontal lami-
nations with few or noburrows punctuatethethick,
burrowed sequences in some of the cores(pl. VII-C).
These thin zones probably represent sediments
deposited rapidly by storms. The bases of the
unburrowed zones are sharp, in some cases
scoured, and the tops have burrowed contacts.

Large-scale primary structures were observed
only in outcrop where upper shoreface facies are
exposed. The only outcrop showing well-preserved
structures is part of sandstone D (pl. VIII-A), in
which friable, clayey, burrowed siltstone beds (6 to
18 inches, 15 to 45 em thick) alternate with well-
sorted, crossbedded sandstone (1 to 2.5 ft, 30 to 96
em thick). A massive sandstone unit occurs at the
top of the section.

Sandstones with primary structures are
characterized by low-angle crossbeds (pl. VIII-B),
large-scale trough crossbeds, and hummocky
cross-stratification (pl. VIII-C) of possible storm
origin as described by Harms and others (1975). A
few distinct, deep, vertical burrows (Ophiomor-
pha) penetrate these crossbedded units (pl. VIII-
D), but the tops of the beds are more densely
burrowed.

DEPOSITIONAL MODELS
FOR THE SAN MIGUEL
FORMATION

Wave-Dominated Delta Model

The principal depositional systems of the San
Miguel Formation are regressive wave-dominated
deltas deposited periodically during a major
transgression and separated by marine shales
deposited during the transgressive phases.
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Figure 26. Three-dimensional model of a wave-dominated delta system. In cooperation with A. J, Scott.

Although the various San Miguel deltas differ in
overall sandstone framework geometry, the three-
dimensional model (fig. 26) illustrates sand-body
geometry and facies of several “lobes” or
subdeltas of a wave-dominated system. This
model can be applied generally to all San Miguel
delta systems. Sediments were debouched into the
marine environment through one or two active
distributaries. The sand was immediately redis-
tributed to the sides of the distributary mouth by
waves and worked into a series of strandplain,
barrier, or spit deposits. Because of this reworking
by waves and longshore currents, the principal
sand bodies of wave-dominated systems are strike
oriented.

Contrary to this deltaic model, Lewis (1977)
considers the San Miguel sandstone units
(western subbasin only) to be systems totally
strike fed from the southwest but does not suggest
a source for the sand. In his sedimentary model, he
shows three main areas of sand deposition, two of
which were 25 and 45 mi (40 and 72 km) offshore. If
those depositional systems were totally strike fed,
the sand-transporting currents could not have
been normal longshore (nearshore) currents, as
suggested by Lewis, but rather some heretofore
unknown type of outer shelf current. In no known
modern example do strike-directed shelf currents
transporting sand over long distances (tens to
hundreds of miles) deposit sand bodies in upward-
coarsening sequences more than 120 ft (37 m)
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thick, as are found in the San Miguel (western sub-
basin). Upward-coarsening cycles shown by
eastern subbasin sandstones are even thicker.

Facies

The dominant deltaic sand facies in a wave-
dominated delta is the shoreface facies of strand-
plain or barrier origin (fig. 26). Associated eolian
facies (not shown in figure 26) and beach facies
may compose a significant part of modern strand-
plain sequences but are the first to be removed by
either subaerial erosion or transgressive
reworking. Therefore, these facies may be absent
in ancient wave-dominated deltaic sequences.

Fluvial facies are minor in the San Miguel
Formation. Few electric logs show characteristic
channel patterns in the updip parts of San Miguel
sandstones. Although there are exceptions, wave-
dominated deltaic systems, according to Fisher
(1969), are fed typically by relatively small- to
moderate-size meandering fluvial systems. Those
fluvial systems that supplied the San Miguel
deltas, particularly those of the western subbasin,
were probably small and contributed sediments at
slow rates. Unfortunately, most of the San Miguel
fluvial systems, except the parts farthest
downdip, have been eroded.

Delta-plain facies are poorly developed in the
San Miguel wave-dominated deltas. Lignites or
coals have not been interpreted from electric log



patterns, and none of the cores studied penetrated
recognizable delta-plain deposits. However, on the
electric log, delta-plain shales may not be distin-
guishable from marine shales. Instead of vast
tidal flats or marshes, the subaerial parts of the
wave-dominated deltas consisted primarily of
beach ridges that were reworked during subse-
quent transgressions. Fisher (1969) stated that
abundant organic deposits characteristic of the
more highly constructive, rapidly subsiding, river-
dominated systems like those of the Mississippi
are lacking in wave-dominated deltas. However,
factors other than delta type also determine abun-
dance of organic deposits, most importantly cli-
mate. Lack of organic deposits could suggest an
arid climate for the San Miguel, but the overlying
Olmos contains abundant coals. Most or all San
Miguel delta-plain organic deposits, as well as
crevasse-splay deposits and the beach and eolian
facies mentioned above, may have been removed
during subsequent transgression.

Rivers feeding wave-dominated deltas
generally have higher sand-to-mud ratios than do
high-constructive elongate and lobate deltas
(Fisher, 1969). Therefore, the thickness of the pro-
delta mud facies basinward of the delta frontis not
as great as in other deltaic settings.

In emphasis, the principal sand facies of a
wave-dominated delta is the shoreface, Because
most of the sand discharged from the distributary-
channel mouth is reworked along strike, channel-
mouth bar deposits are minor. Environments
represented in the San Miguel cores are primarily
the lower shoreface and upper offshore. In the
well-exposed outcrop of the upper part of
sandstone D, physical and biogenic structures
suggest an upper shoreface environment. Vertical
changes in the physical structures and the types
and abundance of biogenic structures in the San
Miguel sandstone sequences fit well the trend
outlined by Howard (1972) in his studies of Upper
Cretaceous nearshore deposits exposed in the
Book Cliffs and the Wasatch Plateau of Utah and
Recent environments along the Georgia coast.
According to Howard’s sequence, the highly
bioturbated lower parts of the San Miguel se-
quences represent the low-energy environment of
the upper offshore. Higher in the upward-
coarsening sequences, horizontal beds and
abundant, distinct burrows are characteristic of
the lower shoreface. Horizontal Ophiomorpha,
abundant in the San Miguel cores, are restricted to
this lower shoreface facies (Howard, 1972). San
Miguel sandstones exposed in outcrop were
deposited in a higher energy environment than
those observed in cores, as indicated by the
outcrop abundance of large-scale primary
structures and the few, deep, vertical
Ophiomorpha. Like the Book Cliffs example, low-
angled crossbeds, interpreted as truncated, wedge-
shaped sets (Howard, 1972), dominate this fairly
high-energy upper shoreface environment.
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Trough crossbeds and the hummocky crossbeds
mentioned earlier also are present, although
Harms and others (1975) interpret a lower
shoreface environment for the hummocky
stratification.

Although the trace fossil Ophiomorpha is
characteristic of nearshore, shallow marine
environments (Weimer and Hoyt, 1964), its
presence alone is not diagnostic. For example,
Ophiomorpha is found in deposits interpreted as
turbidites of a deep-sea fan (Crimes, 1977) and
bathyal grain-flow deposits (Kern and Warme,
1974) and in abandoned distributary channels
and a variety of bay facies (A. J. Scott, personal
communication, 1979). Nevertheless, the vertical
changes in the abundance and orientation of the
Ophiomorpha in the San Miguel cores favor the
shoreface interpretation.

Incomplete Strandplain-Barrier
Sequences

A complete strandplain or barrier sequence has
a vertical succession of offshore, lower shoreface,
upper shoreface, beach, and dune facies (fig. 27a).
As mentioned above, however, the upper part of
such a sequence is subject to erosion. The San
Miguel upward-coarsening units are truncated
sequences; only shoreface, most commonly lower
shoreface, deposits are preserved. The primary
mechanism of destruction was reworking by
marine processes during the transgressions that
followed progradation of each San Miguel delta.
Most of the upper parts of the original shoreface
sequences, which contained large-scale primary
structures, were removed (fig. 27b). Any primary
structures remaining in the upper part of the
truncated sequences were destroyed by intense
bioturbation as water depth increased and the
sand bodies were submerged within a quiet shelf
environment (fig. 27¢).

The degree of transgressive reworking
depended heavily on the rate of transgression;
slower rates resulted in greater reworking.
Whether or not all the beach and upper shoreface
could have been destroyed also depended on the
original thickness of those facies. Although San
Miguel depositional systems are considered to
have been wave-dominated, this does not mean
that wave energy was necessarily high in the
absolute sense, but that it was high relative to the
rate of sediment input. If neither wave energy nor
rate of sediment input were very high, then most of
the original strandplain or barrier sequence might
have been bioturbated, as along some modern low-
energy coasts (Howard and Reineck, 1972a and b),
and only a small amount of reworking was
required to destroy the thin upper shoreface
section containing large-scale crossbeds. Perhaps
removal of only 10 to 20 ft (3 to 6 m) of the strand-
plain sequences occurred.
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Figure 27. Evolution of incomplete strandplain-barrier sequences of the San Miguel Formation.
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original complete sequence (a) was eroded and reworked by physical processes during initial transgression
immediately following delta abandonment (b). During subsequent transgression ofter the deposits had been
submerged below normal wave base, primary structures remaining at the tops of truncated sequences were destroyed
by bioturbation (c). Profiles of the columns represent SP curves expected from the sequences.

Net-Sandstone Patterns

The idealized net-sandstone patterns exhibited
by wave-dominated deltas (fig. 9) have a cuspate
shape resulting from the wave reworking of sand
from the distributary mouth into strike-aligned
bodies. Basic shape variations, however, should
be expected. On the basis of net-sandstone
patterns, the San Miguel sandstone units display
a wide spectrum of wave-dominated delta types
(fig. 28) that are arranged according to the degree
of reworking by marine processes. The spectrum
does not necessarily show an order of increasing
wave energy nor decreasing sediment input, but
rather it simply reveals an order of increasing
dominance by and/or asymmetry of marine
processes regardless of the actual magnitudes of
the factors affecting delta type.

Four of the San Miguel units have been used to
illustrate delta shapes within the spectrum. The
end member showing the least amount of wave
reworking is illustrated by sandstone P, whichisa
composite of two delta lobes. Sandstone P should
perhaps be described as wave influenced rather
than wave dominated. As wave reworking
increases, the delta front assumes a more arcuate
shape, as exemplified by the largest body of
sandstone C. Unit F most nearly resembles the
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classic cuspate delta, where almost all of the sand
debouched from the distributary is reworked
along strike. Although delta shape is largely
determined by the degree of reworking, another
consideration is the number of distributaries,
which also exerts an important control on the
overall shape of the delta system; this may
account for some of the differences between units
C and F. Sandstone G serves as the end member
that shows the most extreme marinereworking by
waves and resulting longshore currents. Progra-
dation into the basin was slow as the delta built
primarily along strike in the direction of the domi-
nant longshore current. The other five San Miguel
deltas not shown in figure 28 can be classified
between deltas F and G near the “highly
reworked” end of the delta spectrum.

It is difficult to judge the degree to which
marine reworking of the deltas during subsequent
transgression affected original net-sandstone pat-
terns. Again, the result depended on the rate of
transgression. Generally, the effect of {fransgres-
sive reworking is to spread the upper parts of the
shoreface sand into thin transgressive bodies, but
the main net-sandstone trends are preserved. One
other primary control on degree of reworking is
bottom topography. For example, units A and B
are located at an abrupt change in the slope of the
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elongate unit G, resulting from differences in the degree of reworking by marine processes. Relative magnitude and
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shelf. Instead of being spread along both strike equal (Rd/Rs=1), and (3) the rate of deposition is

and dip by transgressive reworking, these sand less than the rate of subsidence (Rd/Rs < 1).
bodies may have been reworked only along strike Deposition of the regressive San Miguel deltas
against the bathymetric break, which prevented during the two net transgressive episodes, which
the sand from being carried updip. On the other were caused by regional subsidence, absolute sea-
hand, much of the extremely strike-elongate level rise, or both, generally fits the third model
shapes of the A and B sandstone bodies may have (fig. 29¢).

been attained during delta construction. These The ratio of the two rates can be used to predict
systems were built where bottom slope was steeper delta morphology. Deltas deposited during a long-
and wave energy consequently higher than term net transgressive episode are expected to
farther updip on the more nearly level part of the exhibit moderate to extreme modification by
shelf where the other San Miguel systems were marine processes and a dominance of strike-
deposited. aligned destructive coastal and nearshore marine

sand bodies (fig. 29¢). Another result of a relative

. .l s rise in sea level may be the stacking of sands of
Deltaic Deposition different phases or subdeltas of a particular delta
system. The model in figure 26 shows the result of
abandonment of distributary channels and
The San Miguel deltas were deposited in changes in the sites of progradation. When a

During a Major Transgression

periodic regressions during two long-term, net distributary changes course, the abandoned area
transgressive episodes of an overall marine is transgressed, and sand reworked along strike
transgression. Deltaic systems formed during from the new distributary mouth, perhaps
periods of net transgressions, net regressions, or primarily in the process of spit accretion, is
times of stable relative sea level show definite deposited atop the barrier, spit, or strandplain
differences in both morphology of the individual deposits of the older delta “lobe.” Thus, facies are
systems and their relationships to the other delta stacked, and relatively thick sand deposits may
systems deposited during the same relative sea- accumulate (fig. 30). If relative sea level had been
level trend. Curtis (1970) illustrated models for stable, the series of subdeltas in phases I, II, and
deltaic sedimentation in a Miocene basin in IIT in figure 30 would have prograded much
Louisiana in which rates of deposition and rates of farther into the basin to produce an extensive
subsidence (or for equal effects, absolute sea-level sheet sand instead of thick, strike-aligned sand
rise) varied (fig. 29). Curtis considered three deposits.

scenarios based on the ratio of the rate of As shown in figure 29c, successive delta
deposition to the rate of subsidence where (1) the systems deposited during a relative rise in sea
rate of deposition exceeds the rate of subsidence or level occur farther and farther updip. If the supply
absolute sea-level rise (Rd/Rs > 1), (2) therates are of sediments abruptly ceases, as caused by a major
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Figure 29. Model of deltaic sedimentation in a basin in which rates of deposition and rates of subsidence varied. The
model, based on Miocene deltas of Louisiana, shows differences in morphology and spatial relationships of delta
systems deposited under different rates of deposition and rates of subsidence: (a) rate of deposition was greater than
rate of subsidence (Rd/Rs>1), (b) rates were equal (Rd/Rs = 1), and (c) rate of deposition was less than rate of
subsidence (Rd/Rs<1). In the center column, shorelines of various deltas are numbered chronologically with that of
the oldest lobe indicated at “1”. Modified from Curtis (1970).

avulsion of the fluvial system upstream, the delta
system is abandoned and transgressed (fig. 31,
phase IV). The upper part of the abandoned delta
deposits will be physically reworked into sandy
bars and shoals on the shallow shelf (fig. 31, phase
V). When sedimentinput is renewed, another delta
system will be constructed farther updip. Thus,
rather than producing a continuous landward
migration of facies, a relative rise in sea level will
result in isolated regressive delta systems
positioned successively updip.

Although deposition of the San Miguel units
occurred during an overall relative sea-level rise,
the major depositional systems of the San Miguel
are regressive. However, thin transgressive
sandstones, composed of sediment reworked from
the delta deposits, in addition to some shelf mud,
onlap the delta deposits and are shown on many of
the electric logs as finer zones above the upward-
coarsening sequences.
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Modern and Ancient
Depositional Analogs

Modern wave-dominated deltas are generally
recognized by cuspate shapes and the dominance
of strike-aligned sand systems, but, like the San
Miguel deltas, they show a considerable range in
delta morphology. Examples of these modern
deltas, some of which Galloway (1975) plotted on
his delta-classification triangle (fig. 10), are the
S&o Francisco (Brazil), Brazos (Texas), Kelantan
(Malaysia), Rhone (France), Nile (Egypt), Danube
(Romania), Grijalva (Mexico), and Senegal (West
Africa).

No identical modern analog of the San Miguel
deltas exists; the modern deltas, however, do show
many similarities in general morphology and
sand distribution to some of the San Miguel deltas.
Also, like the model of the San Miguel deltas
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Figure 30. Effects of rising and stable relative sea level on delta formation. Rising sea level produced superposed
sands of subdeltas (phases I, II, and III; cross section B-B'). If sea level had been stable, the delta system would have
prograded farther into the basin to produce a sheet sand (cross section A-A’). In cooperation with A. J. Scott.

presented in the section entitled “Wave-
Dominated Delta Model,” the dominant facies in
these modern examples are coastal barriers and
strandplains.

The Rhone delta, a modern wave-dominated
system, has been studied by Kruit (1955) and
Oomkens (1967, 1970). Two meandering distribu-
taries, the Grand and Petit Rhone, have built the
two lobes of the delta (fig. 32). Moderately high
wave energy is sufficient to rework fluvial
sediments into a series of coastal barriers, which
compose the principal part of the delta. Net-sand
patterns (fig. 32) are similar to those of some of the
San Miguel delta systems, for example, sandstone
E (fig. 19).

The shape of the S3o Francisco delta (fig. 33),
built by one distributary, is strikingly similar to
that of San Miguel delta F, as indicated by unit F
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net-sandstone patterns (fig. 20). The S#o
Francisco delta is subject to extremely high
energy waves, and the fluvially formed sand
bodies, such as channel-mouth bars, dominant in
other types of deltas have been replaced by barrier
and strandplain sands (Coleman and Wright,
1975). Unlike the San Miguel deltas, S3o
Francisco delta deposits are rarely burrowed
(Coleman and Wright, 1975). S3o Francisco
deposits probably are being formed under much
higher energy conditions than were the San
Miguel systems and have not undergone
transgression during which intense biological
reworking may take place.

The Nile River delta (fig. 34) resembles the San
Miguel delta C (fig. 17). Although the Nile is
cuspate in shape at the mouths of the Rosetta and
the Danietta distributaries, the overall delta
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Figure 31. Delta abandonment, transgression, and development of sandy bars and shoals. In cooperation with A. J.

Scott.

shape is arcuate like the main body of the San
Miguel delta C. Mediterranean waves and a
prevailing longshore current from west to east
have redistributed the channel-mouth bar sand of
the Nile into a series of flanking coastal-barrier
and strandplain deposits (Fisher and others,
1969).

The markedly strike-elongate San Miguel
systems, such as unit G, resemble the Senegal
delta, West Africa, which is dominated by waves
and strong, unidirectional longshore currents.
High wave energy of the Atlantic, combined with
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strong longshore currents, redistributes sand into
long linear bodies parallel to the coastline
(Coleman and Wright, 1975). The distributary
patterns and the high mud load of the Senegal
River, however, might be different from those of
the rivers that fed the San Miguel deltas.

Like modern wave-dominated delta systems,
ancient examples of wave-dominated delta
systems are common. Several of these systems
have been delineated in the Gulf Coast Tertiary.
Fisher (1969) interpreted part of the upper Wilcox
(Eocene) of the Texas Gulf Coast to be wave-
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dominated delta systems in which much of the
sand accumulated as coastal barrier or
strandplain facies. Oligocene examples in Texas
(fig. 35) include deltas of the middle Vicksburg
(Gregory, 1966; and Fisher, 1969), the lower and
upper Frio (Big Gas Sand) of the upper Texas
coast, and the upper Frio of South Texas (Smith,
1975). Two early Miocene wave-dominated deltas
occupied the same coastal positions as the modern
Brazos delta of the Texas coast and the Sabine
River mouth at the Texas-Louisiana border
(Smith, 1975).

The Upper Cretaceous of the Western Interior
contains a variety of clastic sequences including
fluvial, deltaic, barrier, and nearshore and
offshore marine depositional systems. Most of the
deltas have not been classified, but at least two of
the sandstone formations have characteristics of
wave-dominated deltas. Isbell and others (1976)
interpreted the deltaic part of the Teapot
Sandstone Member of the Mesaverde Formation,
Powder River Basin, Wyoming, to be a
strandplain/high-destructive delta complex
dominated by wave action and longshore
currents. Sediment characteristics and burrows in
cores are similar to those of the San Miguel deltas.
The Upper Cretaceous Castlegate Sandstone of
Utah and Colorado is another example of a high-
destructive (marine-dominated) delta system
(Smith, 1975). Rows of beach ridges and the strike-
elongate delta-front sands (Van de Graaff, 1972)
suggest that deltaic deposition was dominated by
wave energy. Perhaps with further study, other
deltas of the Upper Cretaceous of the Western
Interior will prove to be the wave-dominated
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variety. Also, other sandstones that have been
interpreted as barrier-sisland and offshore bar
deposits may actually be parts of wave-dominated
delta systems.

SANDSTONE PETROGRAPHY

Mineralogy

Visual estimates of percentages of framework
minerals in thin sections (stained for feldspars) of
San Miguel sandstones C, D, E, G, and I indicate
that these rocks are dominantly arkoses (pl. IX-A),
according to Folk’s (1968) sandstone classifica-
tion. The few thin limestones present are very
sandy micrites and biomicrites. In the sandstones,
various types of quartz compose 50 to 75 percent of
the primary framework grains, but most quartz
exhibits straight to slightly undulose extinction.
Feldspars, including orthoclase, microcline,
perthite, albite, and calcic plagioclase, account for
20 to 45 percent of the framework minerals. Rock
fragments, primarily chert and voleanic rock
fragments, compose the remaining 5 to 15 percent
of the primary framework grains.

Calcic plagioclase, most of which is not
twinned, is more abundant than albite and
potassium feldspar. This abundance of calcic
plagioclase, which is normally extremely
subordinate to other feldspar types, is suggestive
of a volcanic source. Upper Cretaceous volcanoes
in the area may have contributed significantly to
San Miguel sediments.

Cores from sandstones C and G show some
mineralogical trends common among sandstones.
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The greatest percentages of quartz are found in
the coarsest (upper) parts of the sandstones.
Conversely, the amounts of feldspars and rock
fragments decrease upward with increasing mean
framework grain size. Feldspars tend to be concen-
trated in the silt fraction because they are softer
and more easily abraded than quartz; quartz is
concentrated in the sand fraction (Folk, 1968).
Likewise, rock fragments are generally more
easily disintegrated than quartz and, thus, are
concentrated in the smaller grain-size fractions.
San Miguel rock fragments were derived from
very fine grained volcanic source rocks; thus, it
was possible for the San Miguel fragmentstohave
been abraded to very fine sand and silt sizes
without being completely broken into constituent
minerals.

Common miscellaneous framework grains are
heavy minerals and some biogenic and authigenic
constituents that are indicators of a marine
environment and include glauconite pellets,
phosphatic fecal pellets (probably fish coprolites),
and both whole and fragmented shells of an open-
marine fauna. Glauconite is present in all cores,
but its percentage varies considerably. Shell
material in most cores, however, is concentrated
in thin zones no more than a few feet thick.
Pelecypods and gastropods are most abundant in
these shelly beds. Scattered through some cores
are a few scaphopods, echinoids, hydrozoans, and
foraminifers.

Biotite is the most abundant heavy mineral
and is common in most of the cores. Some biotite
flakes appear to have hexagonal shapes typical of
volcanic biotite. Other detrital heavy minerals
include muscovite, zircon, hornblende, pyroxene,
and opaques which are probably magnetite.

Diagenesis

The most common cements in the San Miguel
sandstones are sparry and poikilotopic calcite and
quartz overgrowths. Other diagenetic minerals
are kaolinite, feldspar (rare overgrowths), illite
(clay rims), pyrite, and hematite. Quartz over-
growths are present throughout most of the
available cores, but they are not as important
volumetrically as calcite cement. The cleanest and
originally most porous and permeable zones in the
sandstones now are commonly cemented tightly
with calcite.

The diagenetic sequence in San Miguel sand-
stones fits the general sequence described by
Loucks and others (1979) and modified by Loucks
and others (1980) for Gulf Coast Tertiary
sandstones (fig. 36). Most of the San Miguel
diagenetic events, however, occurred at shallower
depths than those of the Tertiary sandstones. In
San Miguel sandstones, leaching of feldspars and
their replacement by calcite was common (pl. IX-
B), but the timing of this diagenetic event is
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Figure 35. Oligocene wave-dominated delta systems of
(a) the middle Vicksburg of the upper Texas coast,
(b) the lower and upper Frio of the upper Texas coast,
and (c¢) the upper Frio of South Texas. Modified from
Smith (1975).

difficult to determine. Feldspar leaching may
have been an early event, indicated as SM 1 in
figure 36. Poikilotopic calcite (SM 2) was an early
cement, as evidenced by the loosely packed grains
(pl. IX-C). Development of clay rims was not
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Figure 36. Generalized diagenetic sequence for Tertiary sandstones of the Texas Gulf Coast. Modified from Loucks

and others (1980).

included by Loucks and others (1979) in their
diagenetic sequence (fig. 36), but Galloway (1979),
in a study of diagenesis in arc-derived sandstones
from northeast Pacific margin basins, suggests
that clay rims form in the shallow to intermediate
subsurface (1,000 to 4,000 ft, or 300 to 1,300 m).
Where illite rims outline some of the grains in San
Miguel rocks, quartz overgrowths are also present.
However, no rims have been observed on the
outside of the overgrowths, a suggestion that
formation of clay rims preceded that of the
overgrowths, Formation of quartz overgrowths
(SM 3) preceded the sparry calcite (SM 4) (pl. IX-D).
Leaching of shell material (pl. IX-E) and calcite
cement (SM 5) followed formation of the sparry
calcite. The greatest porosity in the San Miguel
sandstones generally is in zones of leached shells
and in the zones of leached feldspars. Authigenic
kaolinite (SM 6) occupies the central parts of some
primary intergranular pore spaces as well as
central parts of larger cavities (pl. IX-F), an
indication that kaolinite was a very late cementin
this diagenetic sequence.

30

SAN MIGUEL SANDSTONES
AS PETROLEUM RESERVOIRS

History of Production

Early in the history of Gulf Coast oil
exploration, interest in the San Miguel was
aroused by outcrop evidence of the large Chittim
Anticline. The first well to test the San Miguel was
drilled in 1912 in Maverick County. This and
subsequent test wells, however, showed that the
shallow San Miguel sandstones contained mostly
low-gravity oil. Commercial production was not
established until the late 1940’s when the Del
Monte Field in Zavala County was discovered and
developed (Lewis, 1977). Higher gravity oil was
found when other deeper San Miguel sandstones
were tested. In addition, improved recovery
techniques allowed some of the shallow, low-
gravity oil to be produced.

Fifty-four fields in the Maverick Basin have
produced hydrocarbons from one or more of the



San Miguel sandstones. Total oil produced from
the San Miguel as of January 1, 1980, is 71,053,209
barrels (Railroad Commission of Texas, 1979). As
pointed out by Lewis (1977), most of the production
has been from fields discovered since 1970. The
San Miguel E sandstone is the biggest producer,
yielding over half the total oil produced from the
San Miguel Formation.

Trapping Mechanisms
and Types of Fields

Lewis (1977) described two basic kinds of
hydrocarbon traps in San Miguel sandstones:
(1) structural traps formed over volcanic plugs and
(2) stratigraphic traps formed by updip pinchouts
of porous sandstones. Fields with structural traps
are small, consisting of only a few wells, but they
account for most of the San Miguel fields.
Examples of fields with structural traps are the
Elaine, Torch, Holdsworth, Indio, South
Batesville, and Del Monte Fields. In the first
phases of exploratory drilling, the plugs were
found accidentally. Later, magnetic surveys were
used to locate the plugs, which are magnetic
anomalies (Simmons, 1967). Now seismic methods
afe the most important tools used to find these
plugs.

Many fields that Lewis (1977) classified as
stratigraphic-type fields actually involve both
stratigraphic and structural traps. In many
places, the elongate, strike-aligned San Miguel
sandstone bodies are surrounded by shale,
providing excellent stratigraphic traps. Many
actual reservoirs, however, are restricted to the
areas where these sandstone bodies lie across
structural noses, so that there is closure in the
strike directions in addition to updip sandstone
pinchouts. The stratigraphic-type fields, such as
Sacatosa in Maverick County, are fewer but much
larger than the fields developed over volcanic
plugs. Most San Miguel oil has been produced
from these large fields, the greatest of which is Big
Wells Field, which produces from sandstone E in
Dimmit County.

Role of Diagenesis
in Reservoir Development

Diagenesis is an important factor in determin-
ing reservoir quality of the San Miguel
sandstones. Cementation destroyed porosity in
some places, while in others, porosity was created
by the leaching of feldspars and shell material or
re-established by the leaching of earlier cement.
Unfortunately, no predictable diagenetic patterns
related to facies distribution have been
recognized. Shoreface facies constitute most of the
sandstone bodies, and lateral facies variations
within the sandstones are not great. As reported
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above, the tightly cemented parts of a San Miguel
sandstone body generally are the most well sorted
zones, but this cementation of well-sorted zones
does not occur everywhere in each sandstone unit.
Likewise, occurrence of the most highly porous
zones, where leaching is significant, is unpredict-
able, as demonstrated in an area where dense core
control was available.

CONCLUSIONS

1. During deposition of the San Miguel Forma-
tion, the Maverick Basin in South Texas consisted
of two subbasins: a western subbasin that
received sediments from the northwest and an
eastern subbasin that received sediments from the
north. Deltaic sand deposition began earlierin the
western subbasin than in the eastern subbasin.

2. The San Miguel Formation was deposited
during an overall transgression consisting of two
major transgressive episodes, as indicated by the
relative positions of individual sandstone units.
Principal deltaic deposits, however, are not
transgressive but rather are progradational,
representing minor regressive sequences periodi-
cally interrupting the overall transgressive trend.

3. Sandstone units of the San Miguel
Formation are a series of deltaic deposits
reworked to varying degrees by marine processes
during both delta building and subsequent
transgressions.

4. San Miguel deltas are broadly classed as
wave-dominated systems, although they actually
compose a spectrum ranging from wave-
influenced lobate deltas to deltas highly modified
by wave processes and elongated in strike
directions.

5. Sandstone geometries are dependent primar-
ily on delta type, although the final shapes of the
San Miguel units were influenced to varying
degrees by transgressive reworking. Major deter-
minants of delta type were (1) rate of sediment
input, (2) wave energy, and (3) rate of relative sea-
level rise. Wave energy and rate of sea-level rise
also largely controlled the degree of transgressive
reworking. Wave energy remained relatively
constant, while the rates of sediment input and
sea-level rise varied to produce the spectrum of
sandstone geometries.

6. Dominant facies interpreted within the San
Miguel sandstones are those of shoreface origin.
Abundance of burrows throughout most cores and
a general lack of large-scale primary structures
characteristic of beach and upper shoreface
deposits indicate that San Miguel sandstones are
incomplete strandplain or barrier sequences. Tops
of original, complete shoreface sequences were
physically reworked during subsequent transgres-
sion. Biological reworking destroyed primary
structures in the upper parts of the truncated
sequences.



7. San Miguel strike-oriented sandstone bodies
are excellent stratigraphic traps for hydrocar-
bons, although most of the known reservoirs are
generally restricted to areas where both structural
and stratigraphic trapping are involved.

8. Hydrocarbon reservoir quality in some zones
is affected considerably by sandstone diagenesis,
but the lateral distribution of diagenetic effects is
unpredictable.
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APPENDIX

Wells plotted on figure 1.

Tobin
grid

7S-4E-7
7S-5E-6
7S-6E-3
7S-6E-8
7S-TE-5
7S-TE-7
7S-TE-9
7S-8E-3

7S-8E-6
7S-9E-4
7S-9E-5
7S-9E-8
7S-10E-4
7S-10E-8
8S-3W-9
8S-2E-5
8S-2E-8
8S-4E-5
8S-4E-7
8S-4E-8
8S-4E-9
8S-5E-2
8S-5E-4
8S-5E-7
8S-5E-9
8S-6E-2
8S-6E-5
8S-6E-6
8S-7TE-3
8S-7TE-7
8S-7TE-8
8S-8E-3
8S-8E-5
8S-8E-9
8S-9E-2
8S-9E-3
8S-9E-4
8S-9E-5
8S-10E-1
8S-10E-4
8S-10E-6
8S-10E-7
8S-10E-9
8S-11E-8
85-12E-1
8S-12E-8
8S-12E-9
9S-3W-1
9S-3W-2
9S-3W-6
9S-3W-7
9S-2W-2
9S-2W-3
9S5-2W-4

Name

International #1 Kincaid

Ford & Hamilton # 1 Nunley

Tenneco # 1 Ney

Glasscock # 1 Carle Mercantile

Pan Am # 1 Ward

Tenneco # 1 Wilson

Pan Am # 1 Muennink

Houston Oil and Minerals # 1
Neumann

Johnston # 1 Howard “A”

Cities Service # 1A Briscoe

Hughes & Hughes # 1 Cadenhead

Progress # 1 Haas

Hughes & Hughes # 1 Plachy

Moncrief # 1 Collins

General Crude # 1 Dunbar

Steeger, et al. # 1 Smyth

Wofford # 1 Bonnett

King & Heyne # 1 Kincaid

Wilcox # 6 Gilligan

Zink, et al. # 1 Vanham

Intex # 1 Vanham

Gorman # 6 Woodley

Humble # 1 Kincaid

Tenneco # 1 Machen

Rowe # 1 Kincaid

Galaxy # 1 Leoncita

Pagenkopf & Jamieson # 1 Blackaller

Tenneco & Pennzoil # 1 Goad

Humble # 1 Wilson

Tenneco & Pennzoil # 1 Wilbeck

Jergins # 1 Goad

Morrison # 1 Boggus

Michelson # 2 Jones

Lake # 1 Gracey & Wegenhoff

Pan Am # 1 Lilly

Douglas # 1 Watson

Pennzoil # 1 Akers

Tenneco & Pennzoil # 1 Edgar

Clark # 1 Jones

Wilson # 1 Kuykendall

Sabine # 1 Tomblin

Producers of Nevada, et al. #1 Wright

Shell # 1-E Hardin

Beard & Turnbull # 1 Graf

Brown, et al. # 1 Katesmorak

Gorman # 1 Gorman Fee

Killam # 1 Schraeter

Harrison # B-7 Saner

Harrison # B-6 Saner

Southworth & Wood # 2 Chittim

Southworth & Wood # 3 Chittim

Monsanto # 1 Saner

Monsanto # 3 Saner

Southworth & Wood # 6 Fessman

9S-2W-5
9S-2W-7
9S-2W-9
9S-1W+4
9S-1W-5
9S-1W-6
9S-1W-7

9S-1W-8
9S-1E-1
9S-1E-3
9S-1E4
9S-1E-7
9S-1E-8

9S-2E-5
9S-2E-6
9S-2E-7
9S-2E-8
9S-3E-6
9S-3E-8
9S-4E-3
9S-4E-6
9S-4E-9
9S-5E-1
9S-5E-2
9S-5E-3
9S-5E-8
9S-6E-2
9S-6E-4
9S-6E-7
9S-7E-1
9S-7E-4
9S-8E-1
9S-8E-3
9S-8E-8
9S-8E-9
9S-9E-1
9S-9E-4
9S-10E-8
9S-11E-2
9S-11E-8
9S-12E-6
95-12E-8
9S-12E-9
10S-4W-6
10S-4W-7
10S-4W-8
10S-3W-4
10S-2W-3
10S-2W-5
10S-2W-9
10S-1W-1
10S-1W-2
105-1W-4
10S-1W-5
10S-1W-7
10S-1W-8
10S-1W-9
10S-1E-4
10S-1E-5
10S-1E-6
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Southworth & Wood # 5 Fessman

Southworth & Wood # 2 Wozencroft

Manor & Midwest # 1 Chittim

Norton & Grage # 32 Chaparrosa

Chaparrosa # 1 Johnson (Core - D)

Norton & Grage # 23 Chaparrosa

Norton & Grage # 17 Norton-
Chaparrosa

Norton & Grage # 39 Chaparrosa

Getty # 1 Greele

Tenneco # 2 Matthews

Tenneco # 1 Matthews

Brown (Electrothermic) # 2 Matthews

Electrothermic & Dougherty # A-1
Matthews

Tipperary # 1 Atwood

Beer # 11 Pryor

Humble # 2 Pryor

Continental # 1 Pryor

Reece # 1 Brewster

Haas # 1 Bartlett

Wilcox # 1 Voight

Winn # 1 Kirchner

Brill # 1 Hope

Kirkwood # 1A Brown

Winn (Zavala) # 1 Murphy

Moncrief # 1 Sawyer

Jocelyn-Varn # 1 Schoolfield C

Moncrief # 2 Rheiner

Tenneco # 1 Mack

Morgan # 1 Halff & Oppenheimer

Tenneco # 1 Stoker

Forest # 1 Halff & Oppenheimer

Smith # 1 Benz

Pronto # 1 Gracey

Mabee # 1 Newsom

Pronto # 1 Halff & Oppenheimer

Humble # 2 Houston

Magnolia # 1 McKinley

Killam # 1 Favor

Placid # 1 Eisenhauer

Humble # 1 Matocha

Texas Crude # 1 Benz

Humble # 1 Moursand

Skelly # 1 Winkler

MecCabe-Turner, et al. # 1 Kincaid

Texas Gas (Winn) # 1 Kincaid

Belco # 3 Kincaid

Lockhart # 1 Mangum

Continental # N Chittim Test

Continental # 606-1 Chittim

Continental # 209-1 Chittim

Norton & Grage # 14 Norton

Norton & Grage # 15 Norton

Shell # 2 Plumley

Cain # 1 Plumley

Shield & Steeger # 1 Stuart-Griffin

Texas # 1 Stuart

Continental # 608-1 Chittim

Norton & Grage # 2 Norton

Norton & Grage # 5 Norton

General Crude # 1 Guyler




10S-1
108 2
10S-2
10S- 2
10S-3E-
10S-3
10S-3
10S-3E-
10S-4
10S-4
10S-4
10S-4
1054
10S-5

108-5
108-5
10S-6
10S-6
10S-6
10S-6
108-7
108-7
108-7
10S- 8
10S-8E-
10S-9
IOS-QE-‘?
10S-9E-8
10S-10E-1
10S-10E-3
10S-11E-4
11S-4W-6
118-3W-1
11S-3W-7
11S-3W-8
11S-2W-1
11S-2W+4
11S-2W-5
11S-2W-8
11S-1W-1
11S-1W-2
11S-1W-5
11S-1W-6
11S-1W-8
11S-1W-9
11S-1E-1
11S-1E-2
11S-1E-3
11S-1E-4
11S-1E-5
11S-1E-6
11S-1E-7
11S-1E-8
11S-1E-9
11S-2E-1
11S-2E-2
11S-2E-4
11S-2E-6
11S-2E-7
11S-2E-8
11S-2E-9

mmmmmmwmr—qmmm mmmmmmmmmmt@mmm
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Minton, et al. # 1-C Rosenberg, et al.

Little # 1 Scroggins

Burr & Crews# 1 H& F

Texas # 3 Northeastern Farming

Superior # 1 Raine

Winn # 2 Holdsworth

Walsh & Watts # 1 Holdsworth

Hughes & Hughes # 1 Holdsworth “B”

Harvey # 1 Whitecotton

Leona # 1 West

Retama # 1-44 Glasscock

Mobil # 1 Byrne

Ancon & Beamon # 2 Gates

Northern & Phillips-Stringer # 1
Dunbar

Humble # C-1 Marrs McLean

Texas # 2 West

Tenneco & Pennzoil # 1 Halff

Bounty # 1 Hausser

Humble # 1 Park

Anderson # 1 McCarthy

Parker # 1-P Halff & Oppenheimer

Flamingo (Pronto) # 1 Bennett

Tipperary # 3 Massey

Hawkins # 1 Whitworth & Mills

Danwoody # 1 White

Pan Am # 1 Oppenheimer-Lang

Southwestern # 2 McKinney

Flournoy # 1 Carnes

Humble # 3 Nixon

Stanolind # 1 Garcia

Gulf # 1 Reese

Shaw # 2 Wipff

Continental # M Chittim Test

Continental # 74-1 Chittim

Continental # 97-2 Chittim

Continental # 4-5 Chittim

Continental # 44-4 Chittim

Continental # 65-12 Chittim

Continental # 71-9 Chittim

Petroleum # 1 Flanagan

Texas # 2 Stuart

Shamrock # 1 Van Cleve

Arriba # 1 Zowarka

Steeger # 1 Chittim

Continental # 570-1 Chittim

Winn # 1 Cross

Michelson # A-4-1 Norton

Winn & H & J # 1 Maegen

Dixon # 1 Benham

Steeger # 1 Stewart

Steeger # 1 Carr

Steeger # 1-1-14 Stewart

Ford # 1 Stewart, et al.

Wood # 1 Weathers (Core - C and G)

Dixon # 1 Kirk

Buttes & Beamon # S-1-81 Cross

Ford & Hamilton # 1 Neel

Winn & Musselman # 1 Compton

Winn & Texas Seaboard # 1 Jackson

MecCardy # 1 Ward

Little # 1 Fee

35

11S-3E-
11S-3E-
11S-3E-
11S-3E-
11S-3E-
11S-4E-
11S4E-
11S-4E-
11S4E-
11S4E-
11S-5E-
11S-5E-
11S-5E-
11S-6E-
11S-6E-
118-7E-
11S-7E-
11S-8E-
11S-8E-3
11S-9E-1
11S-9E-5
11S9E-7
11S-10E-3
11S-10E-4
11S-10E-9
12S-3W-2
12S5-3W-4
12S-3W-5
125-3W-6
12S-3W-8
12S-2W-1
125-2W-2
12S-2W-5
128-2W-7
12S-1W-1
12S-1W-2
12S5-1W-4
125-1W-5
12S-1W-6
12S-1W-7
12S-1W-8
12S5-1W-9
125-1E-1
125-1E-3
12S8-1E-5
125-2E-2
12S-2E-5
12S-2E-7
12S-3E-3
12S-3E-4

3
5
1L
8
9
4
5
6
7
9
1
6
8
3
8
2
5
2

12S- 4E
1254
125-4
1254
12S-5
128-5
1285
12S-5
12S-6
125-6
1256

E'JH

mmmmmmmm
Co b0 = © 23 & dn do Wb Co -

Charter # 1 Cross “S” Ranch

General Crude # 1 Donnelly

Davis # 1 Weaver

Little, et al. # 1 Rutledge

Moore # 1 Northeastern Farming

Tipperary # A-2 Buchanan

Ladd # 29-1 Blalock

Davis # 1 Chinn & Ashby

Delray # 1-25 Baggett, et al. (Core - E)

Brown # 1 Heitz

Pan Am # 1 Buerger

Sun # 1 Thompson

Sun # 2 Garner

Hughes & Hughes # 1 Whitwell

Harkins # 1 Dunn

Kirkwood & Morgan # 1 Bell

Harkins # 1 Avant

Pan Am # 1 Culpepper

Harkins # 1 Thompson

Harkins, et al. # 1 Shiner

Sunray DX # 1 Shiner, et al.

Skelly # 1A La Salle

Texas Co. # 1B NCT-2 Kothmann

Harkins # 1 Atchison

Texas # 1 La Salle

Tiger # 6 Halsell Fnd.

Exsun # 1-A Halsell

Exsun & Tideway # 2-A Halsell

RKG Engineering # 16-1 Halsell

Ontex # 1 Keisling

National Assoc. # A-1 Halsell

Caddo # 111-1-C Halsell

Union # 29-1 Halsell (Core - I)

Texon Royalty # 1 Sullivan

Howeth, et al. # 1 Myers

Shamrock # 1-602 Halsell

Shamrock # 1-663 Halsell

Wellington # B-2 Sullivan

Shamrock # C-2 Eubanks

Caddo # 1-1 Hamilton

BTA # 1 Stowe

Wilbanks # 16-1 Halsell

Steeger # 1 Davis

Continental # 1 O’Meara

One Star # 1 Bray (Core - C, G, and I)

Safari # 1 Crane

BTA #1 77D4 JU-P Cardin

Gulf # 1 Bowman

Houston Oil & Minerals # 1 Allee

Texsun # 1 Reynolds & Wilson,
Humble

Delray # 6-14 Rogers (Core - E)

Steeger # 1 Groos Nat’l Bank

Deep Rock # 1 Barker

Superior # 2 Henry

Texas # 1 Standifer

Continental # 1 Alder

Shell # 1 Matthews

Cockrell & Continental # 1 Rogers

South Texas # 1 Brownlow

Lovelady # 1 Smith

Lovelady # 1 Pena




12S8-11E-5
12S-12E-2
128-12E-6
12S-12E-9
13S-3W-5
13S-3W-6
13S-3W-8
13S-2W-1
13S-2W-3
13S-2W-5
13S-1W-1
135-1W-3
13S-1W-4
13S-1W-8
13S-1E-1
135-2E-1
13S-2E-2

13S-2E-5
13S-2E-9
13S-3E-1
13S-3E-2
13S-3E-7
13S4E-3
13S-4E-6
13S4E-8
13S-8E-4
13S-9E-6
13S-9E-7
13S-11E-3
13S-11E-6
13S-11E-8
148-2W-5

Lovelady # 1 Fuller

Hytech # 1 Gonzales

South Texas # 1 Schulze

Mobil # 1 McNabb

Harkins # 1 Burns

Harkins # 1 Am. Nat. Bank, Austin

Tidewater (Auld, et al.) # 2 Wilson

Pan Am # 1 Franklin

Maguire & Del Mar # 1 Franklin

Gilcrease & Viking # 1 Houston

Colorado # 1 Roark

Stanolind # 1 Henry

Coastal States # 1 Schwartz

Ozark # B-8 Cage

McGoldrick, Smith, & Gill # 1 Hagen

Whitener # 3-W Baker

Continental # 54-1 Cage

Continental # 90-1 Cage

Lovelady # 1 McKnight

Rio Grande # 1-29 Risinger

Shamrock # 12 Fitzsimmons

Sutton # C-1 Eubanks

Galaxy # 1 McKnight

Bowman, et al. # 1 Richardson

Pan Am (Amoco) # 1 Frost National
Bank

MGF # 1 Barrow

Hughes & Hughes # 1 Garner Est.

Stringer # 1 King Tr. 2

Pan Am (Kallina) # 1 Bowman

Western # 1 Tumlinson

Stringer, et al. # 1 Taylor, et al.

Snyder # 1 Hendrichsen “A”

Belco # 1 Coffield

Brown # 1 Storey

Mound # 1 Naylor & Jones

Gulf # 1 Naylor & Jones

Fasken # 1 Henry

Humble # 1 Martin

Fasken # 1 Dilworth

Shamrock # 1-39 Cage
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14S5-2W-6
148-2W-8
14S-2W-9
14S-1W-3
14S-1W-6
148-1W-8
148-1W-9
14S-1E-3
14S-2E-6
14S-2E-8
14S-3E-1

14S5-4E-4
14S-4E-5
14S-5E-2
14S-8E-1

14S-8E-4
14S-9E-1

14S-9E-3
14S-10E-3
15S-2E-6
15S-5E-9
15S-6E-2
158-7E-3
16S-1E-3
16S-4E-5
17S-1E-6
17S8-1E-7
17S-2E-8
17S-3E-6

Shamrock # 1-62 Cage

Shamrock # 1-96 Cage

Shamrock # 1-66 Cage

Shamrock # 8 Fitzsimmons

Harkins # 1 George

Gulf # 1 Fitzsimmons, et al.

Shamrock # 8 Fitzsimmons

Haynes & Y. T. # 1 Fitzsimmons

Western, et al. (Tarina) # 1 Briscoe

Coquina # B-1 Briscoe

Western # 1 Dillon

Superior # 2 Wortham

Superior # 3 Wortham

Lightning # 1 Silver Lakes

Plymouth # 1 Archbishop of San
Antonio

Pan Am # C-1 Cooke

Standard of Texas # 2 South Texas
Syndicate

Pan Am # 1 Foerster

Sutton # 1 South Texas Syndicate

Richardson # A-1 Gates Ranch

Sutton # 1 Kone

Lyman # 1 Petty

Less # 1 Martin

Nordan (Beer) # 1 Briscoe

Rowe # 1 Garner

Copano # A-1 Apache

Copano (Sutton) # A-2 Rachal

Copano # A-1 Palafox

Ginther, Warren & Maguire # 1
Middleton

Additional core wells

9S-1W-5
12S-1E-5
12S-4E-1

Chaparrosa # 3 Johnson
(San Miguel D)
Lone Star # 2 Bray
(San Miguel C and I)
Delray # 8-14 Rogers (San Miguel E)




Plate VII

A. Horizontal Ophiomorpha. These burrows, very similar to those of modern callianassid shrimp, have walls with
smooth interiors and exteriors formed of a single layer of round mud pellets. Core slab from sandstone G, Wood # 1

Weathers, Zavala County.
B. Vertical burrows, most of which are Ophiomorpha. Core slab from sandstone E, Delray # 6-14 Rogers, Dimmit

County.
C. Bed of horizontal laminations with few burrows. The base of the bed (at the break between the lower two core pieces)

is a sharp contact. The upper contact is burrowed. Core slab from sandstone I, Lone Star # 1 Bray, Dimmit County.
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Plate VIII

A. The San Miguel sandstone D exposed in a roadcut along U. S. Highway 277 approximately 14 mi (22 km) north of
Eagle Pass, Maverick County. In the lower part of the roadcut section, burrowed, clayey siltstone beds alternate with
crossbedded sandstone units. At the top of the section is a massive sandstone unit.

B. Low-angle crossbeds in sandstone units shown in plate VIII-A. Scale is 12 inches (30.5 cm).

C. Hummaocky cross-stratification in sandstone units shown in plate VIII-A. Scale is 12 inches (30.5 cm).

D. Deep, vertical Ophiomorpha penetrating one of the sandstone units shown in plate VIII-A. Scale is 12 inches (30.5
cm).
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Plate IX

A. Typical San Miguel sandstone with abundant feldspar. f = feldspar, q = quartz. Thin section from sandstone G,

Wood # 1 Weathers, Zavala County.
B. Leached feldspar grain partially replaced by calcite. ¢ = calcite, | = leached porosity. Thin section from sandstone G,

Wood # 1 Weathers, Zavala County. Crossed nicols.

C. Poikilotopic calcite cemendt. Parts of two single calcite crystals, each cementing many sand grains, are shown under
crossed nicols. Loose packing of grains indicates early cementation. Thin section from sandstone G, Wood # 1
Weathers, Zavala County.

D. Quartz overgrowth (o) and sparry calcite cement (¢). Formation of the quartz overgrowths preceded that of the
sparry calcite. Thin section from sandstone C, Wood # 1 Weathers, Zavala County. Crossed nicols.

E. Leached shell fragments (l). Thin section from sandstone D, Chaparrosa # 3 Johnson, Zavala County.

F., Authigenic kaolinite (k) filling cavity rimmed with very coarse grained caleite, particularly poikilotepic calcite (c).
Thin section from sandstone G, Wood # 1 Weathers, Zavala County. Crossed nicols,
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