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Stratigraphy of Lower Cretaceous Trinity

Deposits of Central Texas'

F. L. STRICKLIN, JR..> C. I. SMITH,’ AND F. E. L.OZO*

ABSTRACT

The stratigraphic record of the Lower
Cretaceous Trinity Division in Central
Texas, as revealed by extensive outcrop n-
vestigation, is that of a shallow sea trans-
gressing the southern flank of the ancient
Llano Uplift. This history is demonstrated
by the overlap of marine carbonates on ter-
rigenous facies representative of near-
shore or onshore deposition and by sedi-
mentary features indicative of wvarious
shallow-water environments of the marine
shelf. Internally, the Trinity is comprised
of three clastic-carbonate couplets, sep-
arated by disconformities, that reflect
a pattern of cyclic sedimentation superim-
posed on the overall transgressive regimen.
These couplets, made up of terrigenous
formations overlain by carbonate forma-
tions, are regarded as lithogenetic time-
stratigraphic units and are designated
lower, muddle, and upper Trimty. Forma-
tions constituting these Trinity subdi-
visions are, in ascending order of deposi-
tion, Sycamore Sand and Sligo Limestone,
Hammett Shale and Cow Creek Limestone,
and Hensel Sand and Glen Rose Lime-
stone.

Trinity deposits are particularly illumi-
nating from an environmental point of
view because features of stratification and
sedimentation are exposed in unusual de-
tail. Included among the environmentally
diverse strata are blanketlike beach de-

! Shell Development Company, Exploration Production Re-
search Report 525.

2 Shell 01l Company, New Otleans, Louisiana.

* University of Michigan, Ann Arbor, Michigan.

“ Shell Development Company, Houston, Texas.

posits, rudist reefs, widespread tidal-flat
deposits, shallow-water evaporites with an
association of unusual diagenetic features,
and shore deposits of caliche and alluvium.
Of these strata, the beach and tidal-flat de-
posits are of prime importance because
(1) they illustrate the diversity of environ-
mental conditions which existed on the
marine shelf, and (2) certain of their fea-
tures allow interpretations of water depth,
degree of water circulation, and morphol-
ogy of the depositional environment. The
faunas, bedding sequences, and sedimen-
tary features which are genetically assoc-
1ated with these deposits should aid in the
recognition of similar deposits elsewhere.

Among the numerous sedimentary fea-
tures which have proved wvaluable in the
recognition of Trinity depositional en-
vironments are sequences of cross-bed-
ding, ripple marks, and organic features
distributed along bedding surfaces. The
latter include stromatolitic mounds and
ndges of algal ongin, clam borings, levels
of bored pebbles, dinosaur tracks, mud-
cracks, and oyster shells cemented n
growth position to bedding surfaces. If
these features occur in a succession of ma-
rine beds, they indicate shallow-water,
probably intertidal, deposition, and the
surfaces bored by clams and incrusted by
oyster shells are very likely related to
brief subaerial exposure of marine sub-
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strates and consequent hardening of sedi-
ments. On the other hand, if such borings
and incrustations occur on top of conti-
nental sediments, they are associated with
a disconformity and mark a former land
surface transgressed by the sea.

The overall character of the Trinity and
the nature of the land over which the
transgression occurred indicate that a
mild degree of land erosion favored the

extensive deposition of low-to-high-energy
bicclastic limestones along a shore of hum-
mocky relief. This differs markedly from
the setting of the modern low-lying Gulf
Coastal Plain and its deposits. Except in
some areas of very low land relief, such as
along the Florida peninsula, the shelf to-
day is being veneered predominantly by
land-derived sediments.



INTRODUCTION

This report presents the descriptive
stratigraphy of the Lower Cretaceous Trin-
ity Division of Central Texas and offers
interpretations of numerous sedimentary
features of environmental significance. In
addition, several stratigraphic intervals
are described i1 detail and environmental
models are reconstructed to account for
their observed features.

The investigation underlying the report
is one of a series of stratigraphic research
studies undertaken by the authors and
their associates for the purpose of defining
stratigraphic principles and developing
sedimentary models within a carefully
constructed regional stratigraphic frame-
work. It is believed that a regicnal ap-
proach to detailed stratigraphy not only
markedly improves correlations and fa-
miliarity with rock types and sedimentary
features but also increases the amount and
quality of information derived when the
models are extrapolated to other strati-
graphic intervals. The Lower Cretaceous
formations of Texas were selected for re-
search study because of therr extensive
outcrops, good exposures of beds only
mildly affected by tectomusm, their wide
range of represented depositional enviren-
ments, and proximity to the Gulf Coast
oil province where abundant subsurface
information is available from most of the
formations. Results of this and related
studies have already been utilized in re-
solving problems related to exploration for
Lower Cretaceous hydrocarbon reservoirs
m the Gulf Coast and should prove equally
useful for other geographic areas and
stratigraphic intervals.

The area of investigation 1s confined to
that part of Central Texas known as the
“Hill Country”—an incised regicn encom-
passing several hundred square miles im-
mediately south of the Tlano Uplift and
northwest of the low-lying Gulf Coastal
Plain (fig. 1). This area is bracketed cast-
ward and southward by the cities of Aus-

tin and San Antonic, where Trimity de-
posits are downthrown inte the subsurface
along the Balcones fault zone, northward
by the Llano Uplift and its constituent
Paleozoic and Precambrian rocks, and
westward by the Edwards Plateau where
Trinity deposits extend into the shallow
subsurface beneath resistant carbonates of
the Fredericksburg Division (See frontis-
piece). Within this area, the Trinity for-
mations have been mapped and their strati-
graphic relations have been determined
by means of measured surface sections.
These detailed sections constitute the ba-
sis for the report.

The subject matter around which the
report is organized consists of the follow-
ing broad topics: (1) stratigraphy of
Trinity formations, with emphasis on lith-
ology and boundary relations, (2) en-
vironmental interpretations of several con-
fined stratigraphic intervals, and (3)
broad conclusions regarding early Creta-
ceous sedimentation. The order of presen-
tation followed in the report 1s that of the
order of deposition of the several forma-
tions that comprise the Trinity.

Material contained in the report repre-
sents data collected and synthesized as part
of a long-term stratigraphic research pro-
gram undertaken by Shell Development
Company. Of the authors, F. E. Lozo con-
ceived, initiated, and directed the mves-
tigation from its inception in May 1953
until its termination in August 1959 Dur-
ing this entire time, F. L. Stricklin, Jr.,
was engaged in field operations and main-
tained headquarters in Kerrville, Texas;
later, in May 1955, C. 1. Smith joined the
project in Kerrville and participated joint-
ly in field work extending over an ap-
proximate four-year period.

During the course of the project, D. L.
Amsbury and B. F. Perkins joined the
stratigraphic research staff of Shell De-
velopment Company in Houston and con-
tributed laboratory assistance in various
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FIG. 1. Geologic setting of Central Texas.

phases of the project. The authors are in-
debted to Amsbury for details of rock
types determined from petrographic analy-
sis and to Perkins for the ecologic signifi-
cance of particular fossils and faunal
suites. Since the termination of this inves-
tigation several years ago, Amsbury and
Perkins have added details on various fa-
cets of Trinity geology, and their special-
ized reports are in various stages of prep-
aration for publication. It is hoped that
this basic stratigraphic report will serve
as an adequate background for the reports
of these and other workers and that their
studies will attain greater significance

when considered in the light of the re-
gional framework presented here.

PROCEDURES

The basic stratigraphic framework in
the outcrop area was established with a
regional grid of sections measured in de-
tail with a hand level and steel tape at
localities spaced rather evenly along de-
positional dip or strike. Careful discrimi-
nation was exercised in searching for fresh
outcrops, and emphasis was placed on
stream bluffs and channels subjected to
the scouring action of intermittent floods.
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Extreme care was followed in piecing to-
gether individual measured outcrops to
construct composite sections showing
weathering profiles and lithologic details:
The general rule followed was to correlate
stratal sequences and achieve a multiple
match of individual beds. The resulting
composite sections are shown in general-
ized form in cross sections that accompany
the report. Individual sections are indi-
cated by capital letters on the composite
sections, and their localities are shown on
a series of maps included in the Appendix.

Concurrent with the primary effort of
measuring sections, additional efforts were
directed toward gathering subsurface
stratigraphic information. Core holes were
drilled by Shell Development Company in
various parts of the area, and additional
cores obtained from related investigations
were made available for ingpection. Ap-
proximately 30 cores from depths of less
than 200 feet were examined and described
in detail. In addition, more than 100 elec-
tric logs ranging down to depths of 900
feet were obtained through the coopera-
tion of landowners and water-well drillers
by means of a portable Widco logger. The
cores and electric logs obtained during the
investigation provide valuable supplemen-
tary control in tracing and mapping se-
quences delineated in outcrops.

Beyond the mutial effort to compile the
gross stratigraphic framework for the in-
vestigated area, additional attention was
focused on confined intervals of particular
environmental interest. Four intervals rep-
resenting  diverse
studied in detail by measuring closely
spaced sections and then specifically map-
ping facies changes, variations in thick-
ness, distribution of diagnostic sedimen-
tary features, and orientation of vectoral
components of beds. These four investi-
gated 1intervals include changes in rock
type representing significant depositional
or erosional events; hence this phase of
the work added immeasurably to the un-
derstanding of geologic history.

environments were

RELATED INVESTIGATIONS AND
ACKNOWLEDGMENTS

In the early 19505, geologic studies were
accelerated on the Cretaceous of Central
Texas, both on the outcrop and in the sub-
surface. A number of oil companies con-
ducted structural mapping programs north
of the Balcones fault zone m commection
with geophysical surveying for Paleozoic
objectives. In the same area, severely af-
fected by the drought of 19511957, water-
supply investigations were supplemented
by damsite studies and intensive water-
well drilling activity. Downdip, the dis-
covery of hydrocarbons in the “deep reef
trend” increased interest in the subsurface
Cretaceous. Coincident with the above,
several organizations were concerned with
carbonate rock research studies. Relevant
data from these and other related inves-
tigations were materially significant in
advancing the project study.

Compilation of the regional geologic
map (frontispiece) was expedited with
contributions of unpublished mapping by
V. E. Bames, Bureau of Economic Geol-
ogy, in Burnet and Blanco counties; by J.
R. Sandidge and Robert Pavlovic, Mag-
nolia Petroleum Company, in Kendall and
other counties to the west; by R. N. Holder,
R. H. Stever, and J. S. Rives, Shell Oil
Company, in Travis and Hays counties and
the fault zone area to the southwest; and by
H. G. Graham of Humble 01l & Refining
Company in the upland area of Kerr and
Kendall counties. This map information 1s
to be mcorporated in the Geologic Atlas
of Texas project of the Bureau of Econmic
Geology.

Concurrent with localized water-supply
studies by W. O. George, F. C. Lee, F. A,
Welder, and K. J. DeCook, of the U. S
Geological Survey, cooperative well log-
ging materially added to the density of
shallow subsurface data. Well cutting sam-
ples and copies of the Widco electrical logs
obtained in the course of the project study
have since been placed, respectively, in the
Well Sample Library of the Bureau of
Economic Geology and i the U. 3. Geo-
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logical Survey’s Ground-Water Division
files m Austin.

Critical to shallow subsurface control
and precise identification of electrical log
units were cores made available for study
by the Comps of Engineers from Canyon
Dam, by the San Antonio Water Board
from test wells in the Canyon Lake reser-
voir area, and by the Guadalupe-Blanco
River Authority from proposed damsites
7 and 8 upstream from Canyon Dam,
other cores were supplied by Mason-John-
ston & Associates in the Colorado-Peder-
nales drainage area. The damsite cores in
Kendall and Comal counties plus those in
Travis county (fig. 4) provided data basic
to revision of Trimity classification and
nomenclature (Lozo and Stricklin, 1956)
and determination of proper outcrop cor-
relatives (Lozo, Stricklin, and Schweig-
hauser, 1956, Forgotson, 1956 1957) of
the subsurface Pearsall Formation (Imlay,
1945).

Company colleagues of varied back-
grounds stimulated progress with pene-
trating discussions in the course of many
field excursions. Throughout the investi-
gation, mutually helpful information was
freely exchanged among various company
geologists and others engaged in related
economic and academic activities, notably
J. R. Sandidge, F. T. Johnston, D. E. Fe-
ray, H. F. Nelson, and Keith Young. His-
torically significant trips were personally
conducted by the late F. L. Whitney and

W. Q. George. To V. E. Bames, whose
acute observations based on extensive field
work anticipated many of the conclusions
reached 1n this study, special appreciation
is expressed for continued interest and
total cooperation.

In the decade subsequent to the termina-
tion of this study, observations on various
aspects of the Central Texas Trinity have
been added by Bamnes (1963-1967) n a
new series of geologic quadrangle maps
and by Young (1962, 1967ab) in several
excellent regional stratigraphic summa-
tions. Environmental reconstructions of the
Glen Rose have been treated statistically
by Behrens (1965) and in a less technical
account by Nagle (1968). Petrographic
and other details have been presented in
unpublished University of Texas theses by
Campbell (1962) on the Hensel Sand and
on Trinity stratigraphic sections in the
Guadalupe River valley by Cooper (1964)
and Abbott (1966). To this list may be
added the oral contributions presented
with permission of Shell Development
Company and recorded in abstracts by
Perkins (1966, 1968) on rock-boring or-
ganisms and on a Glen Rose rudistreef
complex, and by Stricklin and Smith
{1968} and Stricklin and Amsbury (1969)
on environmental reconstruction and de-
positional models pertinent to the Cow
Creek Limestone beach and Glen Rose shell
deposits, respectively.



REGIONAL GEOLOGIC SETTING

The Trinity formations discussed in this
report were deposited on a southeastern,
seaward-projecting flank of the Llano Up-
lift between the bordering East Texas and
South Texas basins. Collectively, the forma-
tions comprise a wedge-like, overlapping
sequence which abuts against older rocks
of the Uplift and thickens from less than
150 feet in the northern part of the out-
crop to more than 1,000 feet in the vicinity
of the Balcones fault zone (fig. 2). Al-
though equivalent formations in the ad-
joining basins are reported to be similar
lithologically, thicker deposits accumulated
in these subsiding areas (Adkins, 1933;
Imlay, 1945; Forgotson, 1957, Winter,
1962).

The structure of the region is dominated
by a promontory extending from the Llano
Uplift southeastward across the Trinity out-
crop area that is referred to as the San
Marcos Arch (Adkins, 1933, p. 260).

NW
¢S LLANO UPLIFT

Probably initiated in Paleozoic time, this
structural feature was a stable, positive ele-
ment (relative to the bordering basins)
throughout the Cretaceous Period, as indi-
cated by reduced rates of sedimentation,
maximum missing sections along uncon-
formities, and facies changes within vari-
ous formations (Adkins, 1933; Imlay,
1945; Durham, 1956, 1957). The configu-
ration of the Lower Cretaceous shelf across
the arch is reflected by isopach contours of
Trmity deposits, by the outcrop and sub-
crop pattern of Paleozoic rocks which were
part of the land mass, and, in a general
way, by Trinity structural contours which
probably approximate the original slope
of the shelf, even though the beds have
been tilted and faulted (fig. 3). All these
characteristics suggest that the depositional
and structural setting of the Lower Creta-
ceous shelf was pre-determined by the an-
cestral Llano Uplift.

REFERENCE SE
OUTCROP SECTION
BALCONES FAULT ZONE

S UB S URTFACE
?

GLEN ROSE LIMESTONE
(UPPER)

CORBULA BED e

UPPER
DIVISION

GLEN ROSE LIMESTONE
{LOWER)

#SAND Zooxs
LlMEsroNE

Cow

TRINITY

FIG. 2. Stratigraphic diagram of the Trinity Division.
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Facies analyses indicate that the Trinity
shelf was a site of primarily shallow-water
deposition and was frequently exposed
subaerially during regressions and low sea
stands. Rudist and coral reefs, intertidal
beds and associated evaporites, and beach
deposits are the most obvious evidence for
shallow-water deposition. The evidence for
interruptions in deposition, which resulted
in several unconformities and numerous
diastems, 18 contained in repeated occur-

rences of diagnostic sedimentary features
related genetically to subaerial exposure
of sediments. In gross lithologic perspec-
tive, the Trinity is composed of fine terri-
genous clastics and marine carbonates
which thin landward and are replaced
along updip edges by redbeds shed largely
from the ancestral Llano Uplift and de-
posited near the shore of a northward-
encroaching sea.



STRATIGRAPHY

The formations which constitute the
Trinity Division of Central Texas (fig. 2)
are genetically combined as partially equiv-
alent terrigenous clastic-marine carbonate
couplets separated by disconformities. The
couplets, referred to as lower, middle, and
upper Trimity, vary from less than 100
to almost 1,000 feet in thickness, and
each corresponds to a single transgressive-
regressive cycle of sedimentation. In de-
positional order, the formations that com-
prise the couplets are the Hosston Sand
and Sligo Limestone, both represented at
the outcrop by the Sycamore Sand; the
Hammett Shale and Cow Creek Limestone,
and the Hensel Sand and Glen Rose Lime-
stone.

The genetic associations indicated above
represent the third in a progressive series
of Trinity classifications based on the ob-
served or inferred gradational relationship
of clastic units with overlying carbonate
intervals. The original single-cycle concept
of Hill (1891-1892, 1901) was revised
by Barnes (1948) with the recognition of
two cycles; the three-cycle concept (Lozo
and Stricklin, 1956) is an extension of
Barnes’ revision with certain differences in
matters of nemenclature.

Hill’s pioneer classification derived from
J. A, Taff’s details in the Colorado River
valley outcrops in the course of Cretaceous
investigations under Hill’s direction for
the Geological Survey of Texas. Hill (1891,
1892) expanded the Trimity Division from
its earlier restriction (1889, 1890ab) to
the basal Cretaceous sand section [Upper
Cross Timbers Formation or Trinity
sands] to include the overlying Glen Rose
limestone beds. Subsequently, the sub-Glen
Rose sandy Trimity beds of Taff's (1892)
Hickory Creek section were designated as
the type Travis Peak Formation (Hill and
Vaughan, 1898), later to be subdivided
into the Sycamore sands, the Cow Creek
beds, and the Hensell [sic] sands as mem-
bers (Hill, 1901). The Glen Rose-Travis

Peak boundary was clearly recognized as
transitional, and the two formations were
considered as distinctive facies of an unin-
terrupted depositional series. Hill’s classi-
fication was applied by most workers over
the next half century; the nomenclature of
1901 remains as official usage of the U. S.
Geological Survey.

Hill’s concept prevailed, with the excep-
tion of Cuyler’s (1931, 1939) speculation
on a disconformity with onlap at the base
of the Glen Rose, until Bares (1948)
emended the Travis Peak by emphasizing
the sharp aspect and mappable utility of
the upper limit of the Cow Creek Lime-
stone, the presence of locally developed
basal conglomerates in the Hensell [Hill’s
misspelling retained], and the transitional
nature of the Hensell—Glen Rose contact.
These pomts, from extensive field observa-
tions in the Pedernales—Colorado drainage
area, were major considerations in pairing
the Sycamore [including the overlying
shale = Hammett] with the Cow Creek
Limestone as the emended Travis Peak
Formation, and the Hensell Sand with the
Glen Rose Limestone as members of the
newly proposed Shingle Hills Formation.
This two-cycle concept of the Trinity was
applied to mapping projects of the Bureau
of Economic Geology in Gillespie, Blanco,
Burnet, and western Travis counties in a
series of guidebook (Barnes, 1949, 1951,
1958) and quadrangle map publications
(Barnes, 1952-1956 and 1963-1967).

The three-cycle concept here applied to
the Trinity developed with recognition and
definition of the Hammett Shale (Lozo and
Stricklin, 1956) as a distinctive formation
unit, evaluation of the Hammett—Sycamore
contact as a disconformity, and realization
that the Hammett Shale, in its genetic re-
lationship to the overlying Cow Creek
Limestone, was analogous to the Hosston
Sand-Sligo Limestone sequence below and
the Hensel Sand-Glen Rose Limestone
couplet above. Subsequent to Hill’s (1901)
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original assignment of this [Hammett]
shale as a lower part of the type Cow Creek
beds, as pointed out by Damon (1940)
after Cuyler (1939) included the unit in
the Sycamore by restricting the term Cow
Creek to the overlying limestone only, the
Hammett (as upper Sycamore) was essen-
tially ignored until Bames (1948) noted
the mappable nature of a color change
associated with a horizon of pholad-bored
carbonate pebbles and boulders at the base
of the unit. Barnes later (1951) advocated
a return to Hill’s usage of Sycamore, not
that of Cuyler and several others (Imlay,
1945, George, 1947, 1952; Cloud and
Bames, 1948, and DeCook, 1960) ; the
revised position of the Cow Creek—Syca-
more boundary did not alter Barnes’ two-
cycle concept of the Trinity (Young, in
Stenzel, 1953; Barnes, 1953).

Although this report s concerned pri-
marily with the outcrop and shallow sub-
surface area of the Trimty north of the
Balcones fault zone, it may be noted that
the three-cycle concept was a direct out-
growth of indications—based on prelimi-
nary attempts to relate outcrop units to
those of the subsurface south of the fault
zone—that Tmlay (1944, 1945) incorrect-
ly equated the type Travis Peak Formation
with the subsurface Pearsall Formation.
Specifically questionable were assignments
of the lower and upper Pearsall shale mem-
bers, respectively, as outcrop Sycamore
and Hensell [sic] sand correlatives. These
questions were resolved early in 1953 with
study of damsite cores in Kendall County
(Guadalupe—Blanco River Authority Dam-
site No. 7, north of Bergheim at Schillers
Crossing). The post-Sligo/pre-Hensel se-
quence in the damsite cores was clearly
recognizable as the post-Sycamore/pre-
Hensel section of the unnamed shale [Ham-
mett] and overlying Cow Creek Limestone
of the type Travis Peak area to the north-
cast. These units could be tied directly
by well samples and electrical logs into
the type Pearsall (Imlay, 1945) of Frno
County with secure determinations of the
lower Pearsall shale (Pine Island Mem-
ber) and middle Pearsall limestone (Cow

Creek Member) ; the absence of the upper
Pearsall (Hensell Shale Member of Tmlay
= Bexar Shale of Forgotson, 1956) in the
Guadalupe damsite and type Travis Peak
areas was attributed to non-deposition or
truncation. These revisions, summarized
by Lozo, were included in an open-file
report of June 1953 prepared for the Guad-
alupe—Blanco River Authority by Mason-
Tohnston & Associates, geological consult-
ants ; they were reviewed in a pre-field trip
panel discussion of March 1955 for the
Corpus Christi Geological Society, were
presented orally in detail at the XX Inter-
national Geological Congress, September
1956 in Mexico City,* and were published
in abridged version in the Gulf Coast Asso-
ciation of Geological Societies Transactions
(Lozo and Stricklin, 1956). With minor
differences of opinion on correct spelling
(Hensel vs. Hensell), choice of nomen-
clature (Pine Island or Hammett, Shingle
Hills Formation or upper Trinity subdivi-
sion), and preference of classification
(Sligo and Hosston = Coahuila Series or
Comanche Series), the basic stratigraphic
relationships presented here are in general
agreement with those of Forgotson (1936,
1957), Barnes (1956, 1958, and in Bell,
Cloud, and Barnes, 1962), Amsbury
(1962), Tucker (1962a, b), and Young
(1962, 1967a, b).

LOWER TRINITY

The lower Trinity is divided into two
formations: the basal Sycamore Sand (sub-
surface Hosston Sand) and the overlying
Sligo Limestone, which is entirely subsur-
face and subcrops beneath the southern
part of the investigated area (fig. 4). Out-
crops of the Sycamore are restricted to the
drainage basins of the Colerado and Peder-
nales Rivers, west and northwest of Austin
(fig. 4), and are the most limited in areal
extent of all the Trinity formations.

* This paper, scheduled for the third volume of the
Cretaceous Symposium, remaing unpublished due to
exhaustion of L[.G.C. funds. The abstract (Lozo,
Stricklin, and Schweighauser, 1956) iz in the Re-
sumenes . . ., XX Congreso Geologico Internacional,
pp. 334-335.
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LITHOLOGIC CHARACTER

Sycamore Sand.—The Sycamore within
its outcrop areas rests unconformably on
folded Paleozoic rocks, usually Smithwick
Shale or Marble Falls Limestone (Pennsyl-
vanian), and thins northward to a feather
edge from a maximum surface thickness
of approximately 100 feet. The formation
is comprised of an irregularly bedded se-
quence of predominantly red conglomer-
ate, sandstone, and claystone, but the most
abundant single constituent is quartz sand.
Though there is much local diversity in
grain size, there is an overall gradation
from coarse to finer, both upward from the
base and laterally in the direction of thick-
ening. Boulders ranging up to 1 foot in
diameter are common updip. These litholo-
gic characteristics plus the presence of len-
ticular channel deposits through much of
the outcrop area indicate the Sycamore to
be an alluvial sequence deposited by ag-
grading streams. In addition to pebbles
and boulders derived from Paleozoic sedi-
mentary rocks and older igneous and meta-
morphic rocks of the Llano Uplift, detrital
dolomites with overgrowths on original
thombs are present (Amsbury, 1962), as
are glauconite grains of probable second-
cycle derivation from Cambrian deposits.
Damon (1940) reported glauconite locally
in the upper Sycamore and interpreted it
to be of authigenic marine origin, but an
alluvial origin of reworked grains seems
to be more consistent with other properties
of the Sycamore.

One of the most interesting facies of the
Sycamore is seen in irregular lentils of
caliche found in some exposures at the top
of the formation along the Pedernales
River, Blanco County (fig. 4). The caliche
is several feet thick and contains oolites,
pisolites, and siliceous grains and pebbles
enclosed in a fine-grained carbonate ma-
trix with numercus crinkly laminations
(Pl. T). Other characteristics of the caliche
and evidence for its origin are discussed in
a later section dealing with criteria distin-

guishing an unconformity developed on
lower Trinity deposits.

Sligo Limestone.—The Sligo Limestone,
at least in part age equivalent of the Syca-
more Sand through downdip facies change,
contains miliolids and ocolites as its most
distinctive components and was deposited
in a shallow sea that approached but never
reached the area of lower Trinity outcrops.
Since the Sligo does not crop out here, nor
elsewhere within the United States, details
on stratigraphy are provided only by cores
and cuttings.

According to a detailed analysis of sev-
eral cores by David Amsbury (personal
communication, 1967),5 the Sligo lime-
stone grades transitionally into the underly-
ing alluvial Sycamore Sand and consists of
two gross facies: (1) a lower unit of lam-
inated dolomite, siltstone, and gray lime
mudstone and wackestone and (2) an
upper unit of oolith lime packstone and
grainstone. The latter unit, as developed
in cores from Guadalupe-Blanco River
Damsites 7 and 8 and from Stanolind No.
1 Schmidt (fig. 4), is dolomitized 35 feet
below its top, contains numerous burrows
that obliterate or obscure the original bed-
ding, and is typified by quiet- and agitated-
water deposits marked respectively by un-
broken shells and reworked fossils and
oolites.

The Sligo thickens markedly downdip
from its updip facies pinch-out. It is 78 and
96 feet thick, respectively, in core borings
at Guadalupe—Blanco River Damsites 7
and 8 Kendall and Comal counties, and
expands to more than 220 feet thick in Pan
American No. 1 Schmidt, Guadalupe
County. Together with the underlying
Sycamore, or the Hosston Formation as
the equivalent is termed in the subsurface,
the clastic-carbonate couplet reaches a
thickness of more than 900 feet in eastern
Travis County (fig. 5).

A report by Amsbury entitled *“Stratigraphic

Petrology of the Lower and Middle Trinity Rocks in
South-Central Texas” iz in an advanced stage of
preparation for publication by The Geological So-
ciety of America.
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FIG. 5. Isopach map of lower Trinity deposits.

DEPOSITIONAL ENVIRONMENTS

The general lithologic character of the
Sycamore and its many indications of
stream channels within the outcrop area
are considered to be evidence of a pied-
mont or valley-fill type of deposit. Other
than the misleading occurrence of glau-
conite, there is no suggestion of a marine
origin for these redbeds. However, the
vertical reduction in size of components
reflects a marine transgression that ap-
proached but did not reach the outcrop
area, and a progressive reduction of stream
gradients during Sycamore deposition.
Downdip in the subsurface, where the
Sycamore or Hosston grades transitionally
into the Sligo, some of the sands probably
were deposited in brackish waters of an
advancing sea. The two dominant facies of
the Sligo, according to Amsbury, record
a progressive landward migration of bay,
lagoonal, and high-energy marine sedi-
ments over alluvial deposits of the Syca-
more. Finally, the depositional cycle repre-
sented by the Sycamore and Sligo ended

with a relative drop in sea level, and lower
Trinity sediments throughout most of the
investigated area were exposed to weather-
ing processes and cemented prior to depo-
sition of the marine Hammett Shale.

NATURE AND SIGNIFICANCE
OF UPPER BOUNDARY

The Sycamore and Sligo are overlain
disconformably by the marine Hammett
Shale. The relation of the Hammett to the
underlying distinct surface of erosion is
one of marine onlap, because successively
younger Hammett beds rest on the surface
of disconformity progressing in an updip
direction (fig. 6). This accounts for much
of the updip thinning of the Hammett and
reflects a steady landward shift of depo-
sition as the sea encroached upon weath-
ered lower Trinity deposits.

Evidence of weathering—The caliche,
developed locally at the top of the Syca-
more in Blanco County (fig. 4), appar-
ently records a period of calcarcous soil
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formation produced in an arid climate.
Distinctive features of the caliche are an
unusual admixture of oolites and scattered
siliceous grains and pebbles in a fine-
grained limy matrix (Pl. I). The colites
are poorly sorted and display distinctive
rings in cross section—in some cases as
many as five or six—and no fossils have
been observed within the nuclei. The asso-
ciated pebbles are unevenly distributed and
range up to 2 inches in diameter; many
are surrounded by closely packed oolites
and some display laminated, travertine-like
overgrowths which commonly flare out-
ward into basal pedestal structures (Pl. T).
Crinkly laminations also occur throughout
the limestone where pebbles are not pres-
ent. Veins and pockets of calcite are com-
mon, and relict cavities floored by oolites
and finer internal sediment and filled above
by sparry calcite have been observed.
Several significant features of the ca-
liche, namely, the oolites themselves and
their closer concentration around pebbles,
the travertine-like pedestal structures be-
neath pebbles, the abundant calcite veins,
and the cavities floored by oolites, are best
explained as solution-and-deposition fea-
tures produced by downward-seeping
ground water. A similar caliche with con-
cretionary oolites, pisolites, and laminar
structures occurs as a Pliocene scil on the
High Plains and like the caliche under
consideration, also caps a fluviatile se-
quence (Swineford, Leonard, and Frye,
1958, p. 98); both the concentric and
laminar structures within the Pliocene
Ogallala limestone are reported (p. 115)
to be the result of repeated accretions left
on grains and irregular surfaces by down-
ward-percolating ground waters enriched
with caleium carbonate through surface
evaporation. These properties leave little
doubt as to subaerial alteration of Syca-
more deposits and indicate that the caliche
is not preserved as erosional remnants of
Sligo Limestone as was first suspected be-
cause of the presence of oolitic limestone
at this stratigraphic position. The altera-
tion of the initial Sycamore deposits could
have taken place during either of the two

known periods of subaerial exposure: the
modern one or that during the Lower Cre-
taceous prior to advance of the middle
Trinity sea. The latter period is implied
by the absence of similar limestone de-
veloped elsewhere within the modern soil
zone.

Physical character of erosion surface—
The surface of disconformity developed on
lower Trinity deposits i3 an initial surface
of subaerial dissection modified by wave
and current erosion of the middle Trinity
sea. Several features of the surface identify
it as a former marine substrate. It has low
relief, usually only a few inches locally,
and associated pebbles and boulders are
locally beveled to form a relatively smooth
pavement, as is apparent in Plate IT. This
mode of erosion indicates that the con-
glomerate was well cemented prior to ma-
rine transgression. In addition to these
physical erosion characteristics, the sur-
face of disconformity is locally dotted by
small pits made by boring clams (Pl II),
contains scattered incrustations of oyster
shells, and is overlain by loose pebbles and
boulders which are also pitted by clam
borings (Pl. III). These organic features
which aid the recognition and interpreta-
tion of this disconformity and numerous
diasterns in upper Trinity deposits are dis-
cussed as follows.

Close inspection of the small, flask-
shaped pits along this disconformity and
in the associated pebbles and boulders usu-
ally provides the key to their origin and
significance, as previously reported by Per-
kins (1966). Some pits usually display a
heart-shaped outline of the clam bivalves;
in some oases, the original shell is preserved
as a pit lining and in other cases the shell
has been leached away, leaving casts in
pits just beginning to develop. A few of the
latter, which have been extracted from
bored boulders overlying the surface, show
the size and shape of the clam and details
of the bivalve attachment area (Pl. III).
Thin sections of the pits usually reveal
abrupt termination of some rock grains
flush with the pit wall;, therefore, the pits
are the result of a boring clam rather than
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one that burrowed by shoving sediment
particles aside or ingesting them. The
mechanism of such an implied boring op-
eration requires a firm or lithified surface.

Selective distribution of the borings is
apparent where the surface is developed on
conglomerate, because pebbles of quartz-
ite, chert, and sandstone are characteristi-
cally devoid of pits, whereas those of dolo-
mite and limestone are extensively bored.
This preferential distribution of pits may
have been caused by either of two methods
of boring. Observations by Younge (1951,
pp. 163-165) reveal that modern rock-
boring clams live just beneath a firm, or
hard, marine substrate;, some species bore
into the sea floor by dissolving the rock
with body acids, and others by removing
the rock with a grinding or pressing action
of the valves, using the shell itself as an
abrasive. The specific method by wluch
clams bored into all but the siliceous Syca-
more rocks of the marine substrate has not
been determined.

Bored pebbles and boulders (Pl IIT)
characterized by the same kind of pits are
spread along the surface of disconformity
as erratics encased in the overlying Ham-
mett Shale. This veneer of pebbles was first
reported by Barnes (1948, p. 8) and used
as one of the identifying characteristics of
a mapping horizon. The pebbles and boul-
ders are composed mostly of Ellenburger
dolomite and are usually rounded and
bored on all sides, suggesting reworking
and overturning by waves and currents.
Dimensions are commonly 2 or 4 inches,
but diameters ranging up to 1 foot have
been observed. Unbored siliceous pebbles
are also present. The specific mode of dis-
tribution of these pebbles over an area of
several hundred square miles and at the
base of quiet-water shale i3 unknown, but
a likely speculation is that they are lag resi-
due resulting from subaerial erosion of the
Sycamore and winnowing by marine ero-
sive agents accompanying transgression of
the sea prior to deposition of the Hammett
Shale.

Oyster shells attached to the surface of
disconformity are also common. Like bored

surfaces and pebbles, these indicate marine
inundation of firm or lithified materials,
because oyster spats require firm surfaces
for attachment.

The onlap of marine beds upon the
continental Sycamore identifies this dis-
conformity as a geologically significant
horizon marking a marine transgression
over terrane of gentle slope. Negligible
land-derived sands or coarser clastics were
deposited in the edge of the advancing sea;
otherwise, the Sycamore and Hammett
would appear transitional, and marine or-
ganisms could not have been in contact
with the erosion surface. This transgres-
sion marked the beginning of a new cycle
of Lower Cretaceous deposition—that of
the middle Trinity.

MIDDLE TRINITY

The middle Trinity formations comprise
a marine wedge no more than 120 feet
thick at the outcrop and include a basal
shale, named Hammett as an outgrowth
of this investigation (Lozo and Stricklin,
1956, p. 69), and the overlying Cow Creek
Limestone (fig. 6). Complete sections of
both formations occur only along the Colo-
rado and Pedernales Rivers, but partial ex-
posures of the Cow Creek are also present
southward along the Blanco and Guadalupe
Rivers.

LITHOLOGIC CHARACTER

Hammett Shale.—The Hammett is com-
posed primarily of dark calcareous or do-
lomitic shale which expands from its updip
pinch-out to more than 60 feet thick in the
outcrop (fig. 6) and continues downdip
into the subsurface as a blanketlike deposit
of gradually increasing thickness. From
the authors” experience in working with
electric logs and other subsurface data, the
Hammett and equivalent Pine Island Shale
of the East Texas basin are one of the most
persistent lithologic units within the Lower
Cretaceous of Texas. The geographic ex-
tent of the Hammett, its marine micro-
fauna, and the lateral continuity of some
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beds indicate that the shale is genetically
associated with a widespread marine trans-
gression.

Microfossils from several Hammett cores
have been mvestigated by Jacob Schweig-
hauser. From the fauna in a core from the
type locality (locality 8, fig. 6), Schweig-
hauser (personal communication, 1956)
noted both arenaceous and calcareous
forms. Arenacecus forms, including Ame-
mobaculites, Haplophragmoides, Trocham-
mina, Vemmeuilina-Gaudryina, Dorothia,
and Marssonella, range throughout the
shale; calcareous forms, such as Lenticu-
lina, Vaginulina, and Citharina, are re-
sitricted in occurrence to a few feet at the
base and top of the Hammett and to a 10-
foot interval just below the middle. Ac-
cording to Schweighauser, these sporadic
occurrences of a calcareous fauna possibly
represent less turbid conditions on an open
sea floor.

Other rock types of the Hammett include
redbeds and a local limestone facies updip
and, farther downdip, sand beds near the
middle and dolomite at the top (fig. 6).
The limestone facies is of special interest,
because it contains two cross-bedded se-
quences of coquina in the Coe Hollow area
that appear to be a result of beach accre-
tion. These deposits will not be elaborated
upon, but their similarity to Cow Creek
beach and off-beach deposits as described
in the following discussion should be bome
in mind.

Cow Creek Limestornne.—The Cow Creek,
a sequence of bioclastic limestones, ex-
pands rather uniformly southeastward
from its pinch-out edge to a downdip sur-
face thickness of about 60 feet. In the
northern outcrop area, it is divisible into
three stratigraphic units, as shown in fig-
ure 6: Unit 1, horizontally bedded, fine- to
coarse-grained calcarenitic limestone;, Unit
2, silty calcarenite with concretionary
masses and fine quartz sand; and Unit 3,
cross-bedded coquina of coarse shell frag-
ments in a sgparry matrix, with poorly
sorted quartz grains and scattered siliceous
pebbles. Individual beds within these units
are traceable for short distances only. In

outcrops southward along the Guadalupe
River, these units have not been differenti-
ated, and the Cow Creelk is primarily fine-
to medium-grained calcarenite comprised
of well-rounded shell fragments with com-
mon thin oolitic coatings. Of the wide va-
riety of fossils in the Cow Creek, oysters
and other pelecypods are by far the most
abundant.

BEACH STRATIFICATION OF
THE COW CREEK

The upper beds of the Cow Creek (Unit
3) are of particular environmental interest
because they comprise an offlapping se-
quence of beach deposits built out from a
shoreline of early Cretaceous and Paleo-
zoic rocks (Stricklin and Smith, 1968).
These beds display the relict morphology of
the ancient shoreline and adjacent sea floor
in obvious detail and are submitted as one
of the best examples of beach deposits in
the geologic literature. The Cow Creek
beach deposits comprise a tabular rather
than a linear body in the perspective ap-
parent from the outcrop, and unlike most
beach accumulations along continental
margins, they are composed primarily of
carbonate detritus rather than quartz sand.
Oyster shell coquina is the principal com-
ponent.

The beach deposits digplay three types
of cross-bedding that are representative
of the typical beach profile (fig. 7). Fes-
tooned cross-beds at the base of Unit 3 are
identified with an uneven off-beach slope,
unifermly inclined beds in an intermedi-
ate position are associated with a smooth
foreshore (P1. IV, B), and similar but op-
positely inclined beds developed locally at
the top of the sequence are apparently those
of the backshore (P1. IV, A). These three
types of cross-bedding are ideally displayed
along the channel of Cow Creek, the name-
sake locality of the formation, approxi-
mately one-half mile downstream from the
farm road crossing to the Hensel ranch
house, northwestern Travis County. Addi-
tional details on these cross-bedding types
and respective interpretations are dis-
cussed as follows.
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FIG. 7. Diagrammatic profile of a beach. (After Dunbar and Rodgers, 1957.)

Off-beach beds.—The festooned cross-
beds at the base of the beach sequence are
evidently the current deposits of an off-
beach zone of vigorous scour and fill. A
succession of these beds shows much ir-
regularity in stratification, but individual
festoon accumulations display garland-like
or crescent-shaped patterns in both vertical
and plan view. These properties are con-
sistent with descriptions of festooned cross-
bedding by Knight (1929, pp. 56-74).
Knight (1930, p. 86) attributed the for-
mation of such beds to an orderly process
of scour and fill dominated by the follow-
ing events: (a) scouring of plunging, elon-
gate, ellipsoidal troughs followed by (b)
filling of the troughs by laminae concor-
dant with the trough floor, and finally (c)
partial truncation of the laminae by later
scouring. Apparently, current-driven sedi-
ment waves are responsible for the scour-
and-fill sequence of events indicated by
such cross-bedding, and it seems likely
that the sediment waves may be either con-
tinuous m the form of wirregular ripples or
broken into individual barchans. In either
case, however, the resulting sediment-filled
troughs should be oriented in the direc-
tion of current flow with the beds showing
a dominant downcurrent component of dip.
Following this interpretation, close agree-
ment in the orientation of Cow Creek
troughs suggests that currents flowed
dominantly in a southwesterly to westerly
direction, but a few troughs have an op-
posing alignment. This would imply long-
shore currents and counter-currents, a
circulatory condition common along mod-
ern beaches. Hulseman (1955) reported

some festoon troughs in the North Sea
with axes parallel to the shoreline and
oriented i opposing directions; the bi-
modality of these troughs is related to in-
coming and outgoing tides.

Elsewhere, at Galveston Beach, Texas,
the authors have observed longshore cur-
rents and counter-currents flowing simul-
taneously in different depth zones of the
beach profile or alternating during various
periods of the day. Hydrographic data
from the Gulf of Mexico, as summarized
by LeBlanc and Hodgson (1959, p. 201),
indicate seasonal reversals of dominantly
westward-flowing surface currents oft Gal-
veston Island during the months of July
and August.

Foreshore beds.—Beds of essentially
parallel inclination comprise a unit of vari-
able thickness in the middle of the beach
sequence that usually does not exceed 12
feet (PL. IV, B). Individual beds are or-
dinarily less than 1 foot thick, are sepa-
rated by well-developed bedding planes,
and constituent layers of coquina are
crudely laminated. The beds maintain an
average inclination of about 7 degrees and
vary only slightly from a southeasterly to
southerly dip direction. From this evi-
dence, these inclined beds and their
constituent laminae are inferred to be suc-
cessive accretions of a smooth, relatively
steep foreshore along a southwesterly to
westerly trending shoreline. Since the ac-
cretions do not constitute a linear body,
but rather one of blanketlike dimensions,
extensive seaward growth of the beach
over at least 25 miles is indicated (fig. 0).

Accessory components in the foreshore
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and underlying off-beach cross-beds in-
clude coarse terrigenocus sand, land-
derived pebbles of varying size and com-
position, and local occurrences of whole
fossils. The terrigenous fraction com-
prises 20 to 35 percent of the beds and
gradually grades from dominantly coarse
quartz sand downdip to coarse chert and
quartz gravels updip. Sizes of the latter
rarely exceed | inch downdip but are com-
monly 2 to 4 inches near the landward
pinch-out of the Cow Creek. Typically ad-
mixed with the updip gravels are large
pebbles and boulders of Ellenburger dolo-
mite, which commeonly display pholad
clam borings, and scattered pebbles of
Smithwick shale. A striking local com-
ponent in the vicinity of Coe Hollow (fig.
6, locality 3) includes large, apparently
reworked coral heads ranging up to 1 foot
in diameter. The growth site of these cor-
als, which are considered unusual because
of their proximity to the Paleozoic land-
mass and their association with coarse ter-
rigenous gravel, is unknown but may be
related to a compactional topographic high
possibly developed above nearby local
beach deposits (fig. 6, locality 3) in the
underlying Hammett Shale. Additional
whole fossils locally present throughout the
extent of the beach deposits include the
clams Trigonia and Protocardia?, which
are commonly associated with bedding
planes.

The character of modern beaches is pri-
marily a function of wave action. Accord-
ing to Thompson (1937, pp. 728-729),
who made an intensive investigation of the
origin of California beaches, the foreshore
slope is continually being modified by an
ever-changing combination of variable fac-
tors, probably the most important of which
are the size and direction of approach of
waves, tidal variations which cause the
zone of wave action to shift back and forth,
and the character of material available for
transportation and deposition. Foreshore
deposits of the Cow Creek show local vari-
ations in size of components and dip that
seem to be consistent with such changing
conditions.

Backshore beds—The beach sequence is
terminated vertically in some downdip lo-
calities by beds that dip gently away from
what appears to be a beach crest or berm
(PL IV, A). Because the dip of these beds
is opposed to that of the underlying fore-
shore deposits, they appear to be backshore
beds deposited on a surface of beach ero-
sion. Similar opposing dips of foreshore
and backshore beds are reported by McKee
(1957, pp. 1707-1718) from several
beaches along the Pacific coast of Califor-
nia and Mexico and at Mustang Island,
Texas, bordering the Gulf of Mexico. Scat-
tered intact shells of clams and ammonites
indicate that the Cow Creek backshore de-
posits are not as thoroughly reworked as
those of the foreshore, implying that they
are possibly storm deposits flung up by
unusually large waves and buried on
higher parts of the beach. As such, these
backshore deposits are the final additions
to a sequence which represents the con-
version of sea bottom to land by seaward-
shifting beach zones of sedimentation.

NATURE AND SIGNIFICANCE OF THE
UPPER BOUNDARY

The Cow Creek Limestone is overlain
disconformably by non-marine Hensel de-
posits.  Successively younger Cow Creek
beds lie beneath the surface of disconform-
ity in a downdip direction as a result of
seaward progradation of the beach, and
erosion or weathering of abandoned beach
segments is implied. The surface of discon-
formity developed on beach deposits of
Cow Creek is one of slight but irregular
topography (Pl V, A). Where the surface
has been stripped of the overlying Hensel,
it displays irregular knolls and depressions
and superficially resembles a tract strewn
with large boulders (Pls. V, A and VI, A).
Such disorderly topography does not sug-
gest the integrated drainage of a stream
and a resulting planated or incised surface
but rather erosion by other means com-
monly observed on modern beaches. Ap-
parently, this topography has resulted from
a combination of dissection and shifting of
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unconsolidated backshore sediments by
storm waves and solution of a limy terrane
by infiltrating ground water. Wind erosion
and deposition may have been additional
complicating factors because in some places
the beach deposits are overlain by calcare-
ous mounds containing shell fragments
(P1. V, B). It appears very likely that these
mounds originated as eolian dunes of sedi-
ment swept from the underlying Cow Creek
deposits.

The Cow Creek disconformity differs
physically from that at the base of the
middle Trinity, as summarized in figure 8,
and has quite different geological impli-
cations. The disconformity at the base of
the Hammett signifies marine transgression
and onlap, and that at the top of the Cow
Creek denotes marine regression and off-
lap of the beach beds. Thus, middle Trinity
deposits represent a complete cycle of
sedimentation.

UPPER TRINITY

The upper Trinity formations are the
Hensel Sand and the overlying Glen Rose
Formation (fig. 2). The Glen Rose is the
thickest and most extensively exposed of
all Trinity formations and is separable
into upper and lower members of differ-
ing lithologic characteristics by the Cor-

bula bed, a widespread marker datum in-
itially recognized by F. L. Whitney. The
Hensel is a single, time-transgressive litho-
logic unit comprised primarily of alluvial
and near-shore marine sands equivalent to
Glen Rose deposits (fig. 2). The Hensel and
Glen Rose Formations constitute a massive
wedge which thins from about 1,000 feet
near the Balcones fault zone to less than 50
feet at the updip edge near the Llano Up-
lift. The gradational relationship of the
Hensel clastics and Glen Rose carbonates
and the marine transgressive nature of the
upper Trinity sequence are illustrated in
figures 9 and 11 (in pocket).

It may be noted that the Hensel Sand,
named after the homestead established in
1857 by Herman Ludwig Hensel on ranch
lands adjacent to the old Marble Falls-
Austin road crossing of Cow Creek, west-
ern Travis County (Locality Map D, Ap-
pendix), was misprinted as Hensell [sic]
when formally introduced (Hill, 1901, pp.
142, 143, 145) despite earlier correct ref-
erences to “Mr. Hensel’s house, at Travis
Peak post office” (Hill, 1890b, p. 120; Hill
and Vaughan, 1898 p. 222, and 1902
[but dated 1900], p. 3). The two-story na-
tive stone house, the site of Travis Peak
post office from 1870-1934 and a historic
landmark continuously occupied by de-
scendants and heirs of the pioneer Hensel

Geologic Characteristics
i i GENETIC
Disconformity SUCCESSION BED TOPOGRAPHIC ORGANIC
OF BEDS RELATIONSHIP CHARACTER CRITERIA
HENSEL Nonmarine Hurnmocky surface
AN Marine offlap with relief of a None present
COW CREEK Marine tew feet locally
HAMMETT Marine Irregular surface Bored surface
e aea e d Marine onlap with relief of @ Bored boulders
SYCAMORE Predominarfﬂy few inches locally Incrusting oysters
nonmarine

FIG. 8. Comparison of lower and middle Trinity disconformities.
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to the present day, is adjacent to the fam-
iy cemetery correctly named on the new
{1966) 7.5-minute Travis Peak, Texas
topographic quadrangle map. Reiterating
the corrected spelling made earlier (Lozo
and Stricklin, 1956 p. 70), the impro-
priety of retaiming the name Hensell
[sic] in the geologic nomenclature—by
the implied legality of the Stratigraphic
Code, Article 12 (Amer. Comm. Strat.
Nomencl., 1961)—is clearly contrary to
the facts of what 15 listorically fitting and
orthographically proper.

LITHOLOGIC CHARACTER

Hensel Sand (lower Glen Rose equiva-
lent) —The oldest Hensel (fig. 9, in
pocket) 1 comprised of continental and
marine deposits which are described as
follows.

The continental deposits, which are re-
stricted to an updip position and exposed
only in the Colorado-Pedernales drainage
area, commonly contain a basal limy layer
(PL. VI, A) of probable secondary origin,
variable amounts of red, green, and ma-
roon clay in a succeeding position, and
an upper sandy section with coarse chan-
nel gravels at the base (figs. 6 and 9).
Both the clay and the sand appear to be
part of an alluvial fan built out from the
Llano region by streams flowing onto a
low-lying coastal plain. The origin of the
limy layer present in the more downdip
localities, however, is not as obvious. It
18 uregular and nonstratified, composed
of nodular, fine-grained limestone and
delomite, and contains abundant verti-
cally oriented pockets and cracks filled
with oxidized clay (Pl. VI, B). The clay
likely fills a network of irregular crevasses
produced by downward-percolating ground
waters. These characteristics bear some
similarity to calcareous soils forming in
certain coastal regions of low rainfall, as
in South Texas where a caliche mantle of
the Lissie Formation is ascribed by Price
(1958, p. 47) to the leaching and concen-
tration of carbonates by evaporation of
surface and soil waters. The basal limy de-
posits of the Hensel are in the proper se-

quential position to have been exposed to
weathering and soil-forming processes,
since they cover an abandoned beach and
lie at the base of an alluvial fan.

The marine deposits of the Hensel are
about 30 feet thick and consist primarily
of sandy dolomite beds (fig. 9). They pro-
gressively replace younger continental beds
updip and thus indicate a shift of the sea,
accompanied by uninterrupted deposition,
across an alluvial slope. The oldest dolo-
mite beds that constitute the southernmost
downdip Hensel (Section 3, fig. 9) contain
appreciable clay, numerous siliceous con-
cretions, and exceptionally large oysters.
These beds, best exposed around the set-
tlement of Spring Branch, Comal County,
have been described m detail by Cooper
(1964). Scattered Orbitolina texana and
Monopleura-like rudists are common in the
younger updip dolomite beds.

Lower Glen Rose member—The lower
Glen Rose 1s divided into two informal
stratigraphic units on the basis of con-
trasting lithology (fig. 9). The lower unit
(Unit 1) consists mostly of massive ledge-
forming limestone beds comprised of shell
fragments m a lime mudstone or sparry
calcite matrix and has few interbeds of
clay. It 1 subject to much variation in
thickness, primarily through updip facies
change to Hensel dolomite, and is popu-
larly known from sporadic rudist and coral
reef deposits and the local development
of caves, such as Cascade Cavermns and
Century Caverns (formerly referred to as
Cave Without a Name), Kendall County.
Individual beds of this unit, although they
may be laterally persistent, are extremely
difficult to trace from one locality to an-
other. Unit 2, in contrast, usually con-
tains fissile dolomitic shale and dolomite
beds in the lower part and alternating beds
of clay and limestone in the upper part.
These fine-grained limestone beds are
traceable over a broad area and contain
a variety of sedimentary features, some of
which are indicative of intertidal deposi-
tion (Stricklin and Amsbury, 1969) and
are the subject of later discussion. Unit 2
is of comparatively uniform thickness.
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Many lower Glen Rose beds are very
fossiliferous, with the most plentiful types
being internal casts of pelecypods and
gastropods deformed by compaction ac-
companying burial. Some of the typical
fossils (Pls. VII and VIII) include a wide
variety of mollusks, several kinds of echi-
noids, at least three different species of ru-
dists, the dasycladacian alga Porocystis,
and the disc-shaped foraminifer Orbito-
lina texana. A particularly varied fauna
occurs n nodular limestone and clay at the
top of Unit 2; these highly fossiliferous
beds have been designated by Whitney
(1952, p. 66) as the Salenia texana zone,
after the occurrence of the distinctive reg-
ular echinoid (Pl. VII, g and h) by that
name.

A thin accumulation of Corbula mar-
tinae (Pl XIV, B) at the top of the lower
Glen Rose is the most persistent and dis-
tinctive bed in the entire formation. This
bed forms an iron-stained ledge that is
easily recogmzed between the underlying
white-to-cream-colored “Saleria marl” and
an overlying porous zene of brown-to-red
rocks stained by circulating ground wa-
ters. The “Corbula bed” is seldom more
than 1 foot thick, is traceable over an out-
crop area of at least 5,000 square miles,
and is easily picked as a resistive point on
many electric logs of water wells run in
conjunction with the field work. For these
reasons, the “Corbula bed” is a convenient
horizon for structural and geologic map-
ping and is designated herein as the boun-
dary of the upper and lower Glen Rose
rather than the horizon of prominent litho-
logic contrast at the top of the bioclastic
limestone of Unit 1.

Reefs are a subordinate lithology of the
lower Glen Rose but omne of the most in-
teresting. A large reef containing abundant
corals is developed in the basal part of
Unit 1 a few miles southeast of Blanco,
Blanco County, and the upper part of the
unit is characterized over much of the in-
vestigated area by sporadic occurrences of
rudist reefs. The reefs and other lower
(Glen Rose deposits of special environmen-

tal significance are discussed in a later
section of the report.

Upper Glen Rose member.—In contrast
to most of the lower Glen Rose, the upper
(Glen Rose is primarily a sequence of al-
ternating resistant and nonresistant beds.
The latter are comprised primarily of cal-
careous clay, and the resistant beds in-
clude dolomite, lime mudstone, and a va-
riety of bioclastic, fine-to-medium-grained
limestones. In addition, two evaporitic in-
tervals from which gypsum is being
leached in the present-day vadose zone are
expressed at the surface by rubbly solution
zones. Bed continuity and “stairstep”
topography developed on resistant and
nonresistant alternating beds are the dom-
inant traits of the upper Glen Rose. These
characteristics are readily apparent in the
vicinity of Shingle Hill, Travis County,
and Twin Sister Peaks, Kendall County.

Two stratigraphic sections are included
to illustrate the details of upper Glen Rose
stratigraphy. A depositional strike sec-
tion (fig. 10, in pocket) shows a high de-
gree of lateral continuity; whereas a
depositional dip section (fig. 11, in pocket)
shows progressive updip disappearance of
beds through facies change and onlap over
pre-Cretaceous rocks.

Eight distinct stratigraphic units are
recognized within the upper Glen Rose
section (fig. 10). From bottom to top,
these units are as follows: Unit 1, a col-
lapsed brown-to-red-stained breccia zone
from which gypsum has been removed;
Unit 2, thinly bedded, slightly fossiliferous
clay, claystone, and limestone; Unit 3,
nodular, very fossiliferous limestone and
clay containing Orbitolina texana and
abundant steinkerns of various species of
gastropods and pelecypods; Unit 4, a se-
quence comprised mostly of calcarenite;
Unit 5, a second collapse breccia zone re-
sulting from leached evaporites, Unit 6, a
clay section with thin, resistant beds of
calcarenite and a few dolomite stringers;
Unit 7, alternating beds of fossiliferous
limestone, dolomite, and clay; and Unit §,
a terminal sequence of interbedded clay
and finely crystalline dolomite. All eight
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units persist for at least 125 miles along
the northeast-southwest dimension of the
outcrop area. Some individual beds, a few
of which are shown as markers in figures
10 and 11, have comparable distribution
and are very helpful in tracing and corre-
lating outcrops. The zonal occurrence of
Owrbitolina texarna in Unit 3, which is the
uppermost occurrence of this large fora-
minifer m the outcrop Glen Rose, is par-
ticularly helpful in stratigraphic orienta-
tion, as this resistant fossil is easily de-
tected in “float” below this level.

All of the eight upper Glen Rose units
progressively disappear updip within a
distance of less than 25 miles (fig. 11).
All but the uppermost unit, which onlaps
weathered caliche of unknown age, ap-
pear to grade transitionally into the un-
derlying Hensel Sand. Within the transi-
tional zone are isolated occurrences of uni-
formly cross-bedded coquina judged to be
local beach accretions. An outerop of this
coquina, about 10 feet thick and with beds
dipping 8 to 10 degrees, may be seen in
the channel of Grape Creek at the town
of Luckenbach, Gillespie County.

Hensel Sand (upper Glen Rose equiva-
lent).—The younger Hensel is comprised
of redbeds (Gillespie Formation of Hill
and Vaughan, 1898) which grade from
alluvial to near-shere marine sand and
clay, both upward from the base and lat-
erally downdip. These Gillespie County
redbeds are considered to be equivalent in
age to adjacent marine deposits of the up-
per Glen Rose. The approximate overall
slope of the Paleozoic land surface on
which these basal Cretaceous sands were
deposited can be determined by extrapo-
lating the Paleozoic unconformity (fig.
11) to a point 340 feet below the base of
the Cypress Creek Section, based on sub-
surface data from a water well in that
vicinity. The resultant slope is calculated
to be about 700 feet in 24 miles, or slight-
ly less than 30 feet per mile. This is more
than, but probably close to the original
depositional slope (since there is only slight
downdip thickening of Trinity deposits as
a result of tilting during sedimentation)

and is of sufficient magnitude to suggest
that the streams which transported the
sand and clay did not become aggrada-
tional until they nearly reached the coast.
If so, deposition of the redbeds is ge-
netically related to marine transgression,
and the redbeds are only slightly older
than the overlying upper Glen Rose de-
posits.

The youngest Hensel thins updip by on-
lap (fig. 11). Aleong its feather edge, it
rests on a nodular limy layer which is sim-
ilar to the caliche present at a lower strati-
graphic position above the Cow Creek
Limestone. This limy accumulation may
also be a fossil caliche, but its age could
range from Paleozoic to Lower Creta-
cecus since it overlies Paleozoic rocks.
The updip thinning and local absence of
the basal Cretaceous sand and its replace-
ment by marine deposits indicate that the
Llanc Uplift was an insignificant sediment
contributor by the close of Trinity time.

INTERVALS OF MAJOR
ENVIRONMENTAL SIGNIFICANCE

The most significant intervals of the
Glen Rose, from an environmental point
of view, are those that include reefs, inter-
tidal deposits, the “Corbula bed,” and col-
lapse breccia zones resulting from leached
evaporites. These environments, as inter-
preted by several lines of evidence includ-
ing a wide variety of sedimentary features,
are treated separately in the following dis-
cussion.

REEF BEDS

Numerous local reef deposits occur with-
in Unit 1 of the lower Glen Rose within
the area shown in figure 12. The majority
are fairly small mounds developed in the
upper part of Unit 1, but several more ex-
tensive tabular reefs are present at the
same stratigraphic position, and an older
one occurs within the lower 100 feet of
the unit.

The small mounds (Pl IX, A) appear to
be analogous to patch reefs developed in
lagoons of present-day reef tracts. They
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FIG. 12. Regional map showing localities of lower Glen Rose reefs.
are circular to slightly elongate in plan For additional information on these

view, are usually less than 75 feet across
and no more than 30 feet thick, have flat
or slightly down-bulging bases, and are
composed primarily of both steinkerns
and shells of caprinid-type rudists in a
lime-mudstone matrix. Many of the rudists
are unbroken, closely crowded together,
and appear to be in erect growth positions;
hence these gregarious pelecypods, with a
growth habit similar to corals, probably
created a baffle for lime mud accumula-
tions on mounds that projected slightly
above the surrounding sea bottom. Bed-
ding is obscure within the mounds, but
they are generally overlain by beds which
dip radially away at angles of up to sev-
eral degrees. Whether these beds grade
into reef material by facies change or abut
against the flanks of the mounds as later
deposits is not clear-cut. Both relationships
probably exist, with the uppermost inter-
mound beds abutting discordantly against
the reefs. These reefs and their associated
facies have been the subject of detailed
investigations by Perkins (1968, 1970).

lower Glen Rose reefs, the reader is ad-
vised to watch for the following papers by
Perkins, which are in various stages of
preparation for publication as indicated:
“Geology of a Rudist Reef Complex,” Jour-
nal of Paleontology; “Cretaceous Reefs in
Western Gulf of Mexico,” Proceedings of
First North American Paleontologic Con-
ference; and “Genetic Implications of Ru-
dist Reef Architecture,” Society of Eco-
nomic Paleontologists and Mineralogists
Special Paper.

Mounds such as those described above
are best developed m southern Bandera
County (fig. 12). They are ideally ex-
posed at low positions in stream banks
along a one-half mile stretch of Red Bluff
Creek, about 2 miles downstream at the
crossing of Farm Road 1283 over Red
Bluff Creek, and along the west bank of
Medina River within the upper reaches of
Medina Lake. Numerous mounds also exist
along drainage ways of the Guadalupe and
Blanco Rivers in northern Comal and
western Hays counties, but these mounds
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are generally difficult to observe because
of their high position on hills or in stream
bluffs.

The more extensive tabular reefs (Pl
X, B) are less numerous than the small
mounds and only their general character-
istics are known because their size pre-
cludes complete exposures in any one out-
crop. The best exposures of tabular reefs
developed within the same stratigraphic in-
terval as the small mounds occur in the
bed of Red Bluff Creek, 1% miles south
of Pipe Creek community, southern Ban-
dera County; along Cibolo Creek just
north of Cascade Caverns, southemn Ken-
dall County; and along Little Blanco River
on the Davis Ranch, southern Blanco
County. The lateral dimensions of these
reefs are on the order of at least several
hundred feet (and may be greater should
the reefs prove to be elongate), and they
are as much as 50 feet thick or more in
central parts. As in the small mounds, ca-
prinid-type rudists (Pl X) are the domi-
nant faunal component, but corals and
coralline algae also occur as minor ele-
ments. In contrast to the mounds, the tabu-
lar reefs appear to contain more abundant
original shells and shell fragments in a
matrix which varies frem lime mudstone
to sparry calcite. The latter, which infills
primary void space, is probably indicative
of a higher degree of wave action related
to seaward geographic position or topo-
graphic prominence above the mounds. A
more direct indication of vigorous wave
action is provided by a 15-foot sequence of
fringing reef talus beds which dip away
from the southern front of the Red Bluff
reef at angles of up to 7 degrees. The thick-
ness of this reworked talus, cemented by
sparry calcite, establishes a minimum wa-
ter depth of 15 feet.

Another large tabular reef has been de-
scribed previously (Lozo and Stricklin,
1956, p. 70), along “The Narrows,” a
scenic gorge of the Blanco River in west-
emmost Hays County. In contrast to the
tabular reefs described above, “The Nar-
rows” reefl occurs within the basal 100
feet of the lower Glen Rose and is com-

posed predominantly of corals. Montastrea
is the most spectacular if not the principal
coral, with heads ranging up to 3 feet in
diameter, however, J. W. Wells (1932),
based on collections by F. L. Whitney, de-
scribed 29 coral genera from this locality
and younger mounds located several miles
downstream. The reef is exposed over a
distance of one-quarter mile along the
channel, and coral debris may be seen in
bluffs a considerably greater distance
downstream; the subsurface extent of the
reef is unknown. A 10- to 15-foot sequence
of shell debris caps the reef and contains
individual beds dipping at angles of up
to several degrees.

A few miles west of “The Narrows”
coral reef, water well and o1l test borings
indicated the presence of locally shallow
Ellenburger limestone buried beneath as
little as 200 feet of lower Glen Rose strata.
It is thus possible that growth of corals in
this area may have been favored by an
island of Ellenburger limestone, which
served as a barrier preventing marine in-
flux of land-derived detritus.

INTERTIDAL AND SHALLOW-WATER
FEATURES

Sedimentary features of intertidal ori-
gin occur throughout Bandera, Kendall,
and southem Blanco counties in a thin,
6-foot mterval of the lower Glen Rose
(Unit 2), about 40 feet above the horizon
of rudist reefs. These include laminated
algal and rippled beds developed over an
extensive area and other features of local
importance.

The top of this mterval 1s defined by a
thin, laminated algal bed, which has been
mapped over an arca of several hundred
square miles, and a similar but less exten-
sive bed is present at the base. Both beds
are composed of thin, dark laminae inter-
stratified with lighter bands of fine-grained
calcaremte and are charactenzed by small,
apparently accretionary mounds known
as stromatolites (Pls. XI; XII, B). The
origin of these beds is attributed to mat-
forming, blue-green, filamentous algae.
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The mode of accumulation of this type of
algal sediment is well known from a study
by Black (1933). He reported that blue-
green, filamentous algae locally cause the
accumulation of laminated sediments on
Andros Island, within and just above the
intertidal belt (p. 169), and that these
laminated sediments are formed by the re-
petition of two processes—the development
of mucilaginous algal mats on moist sur-
faces or on the bottom of shallow ponds
and the entrapment of sediment grains as
they are transported across the sticky sur-
faces during tidal sweep or rainy periods
(pp. 176—177). Because no hard parts of
this type of alga are preserved, the assign-
ment of an algal origin to the Glen Rose
beds is based primarily on their physical
resemblance to present-day algal depos-
its. In addition to the striking resemblance
between the stromatolites and modern al-
gal heads (Pl. XI, A), another criterion
for identifying this type of algal sediment
is evidence of the influence of an adhesive
film seen in calcarenite layers deposited on
steeply inclined, vertical, or overhanging
surfaces (Ginsburg, 1955); as displayed
on the crenulated left side of the largest
stromatolite in Plate XI, B, such unusual
depositicnal attitudes are due to the sticki-
ness of the algae. Stromatolites of both
beds in Unit 2 locally display such evi-
dence.

Each algal bed is commonly underlain
by a thin calcarenite bed with one or more
layers of well-defined ripple marks. In
areas of multiple ripple marks, the indi-
vidual 2- to 3-inch flagstone layers are
characterized by excellent bedding cleav-
age and are exploited as building stone,
particularly around the town of Comfort,
Kendall County. The ripple marks are
symmetrical and may be classified into two
types. Their crests are low in relief,
broadly rounded, and 2 to 4 inches apart;
in plan view, they either are parallel,
thereby fitting the description of oscilla-
tion ripple marks, or form interlocking
patterns typical of interference ripple
marks. The orientation of the ripples has
been measured at numerous localities and

is dominantly northwest-southeast for
more than 100 miles aleng the outcrop.
These properties suggest that the ripples
formed in standing water agitated by the
wind with the dimpled interference pat-
terns probably resulting from abrupt wind
shifts which superimposed one ripple set
on a previously formed set. The water in
which the ripples formed must have been
shallow, as indicated by the associated al-
gal beds. Considering their effectiveness
as sediment binders, the algae responsible
for these beds probably accounted largely
for preservation of the underlying ripple
marks.

In addition to stromatolitic beds and
rippled surfaces, the rocks in this inter-
val also contain bored surfaces and mud-
cracks (Pl. XIIT), dinosaur tracks, oyster
shells incrusted onto bedding surfaces, and
rippled bar deposits (Pl XII, A). Some of
these features, like the algal beds, point
to exposure of the sea bottom. The mud-
cracks are indicative of desiccation, and
the associated clam borings and oyster-in-
crusted surfaces provide supplementary
evidence of marine substrates hardened
through drying. Dinosaur tracks, which
are in some cases developed on bored and
mudcracked surfaces, as at La Jita Girl
Scout Camp, Utopia, Uvalde County, are
probably preserved because the animals
walked or waded across a partially hard-
ened crust. It seems highly probable that
these features formed in an intertidal zone
from which shallow water occasionally
withdrew, or was driven off by strong
winds, to allow at least partial drying of
sea floor sediments.

CORBULA BED

The mid-Glen Rose “Corbula bed,”
named from the abundant occurrence of
the small clam Corbula martinae (PL
XIII, B), is the basal bed of a sequence
in which variable thicknesses of gypsum
occur in the subsurface. The fact that Cor-
bulas occur not only beneath the evaporite
sections but also in local stringers be-
tween the gypsum beds indicates that these
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clams had a high tolerance for hypersaline
waters. Based on the assumption that sa-
linity was critically controlled by water
circulation, the “Corbula bed” indicates a
pronounced change in circulatory condi-
tions from those of a freely circulated body
of water, represented by the underlying
profusely fossiliferous, nodular limestone
(Salenia texana zone), to those of a re-
stricted water body, in which the overly-
ing evaporites accumulated. The Corbula
stringers between the evaporites probably
reflect minor improvement in water cir-
culation and reduction in salinity.

Two distinct modes of Corbula occur-
rence indicate sediment reworking by cur-
rents or waves over much of the outcrop
area. In the eastern half of the area, the
“Corbula bed” is composed almost totally
of Corbulas and usually contains broad, ir-
regularly trending ripples (P1. XTIV, A);
whereas, in the westemn part of the area
the bed is thicker, seldom rippled, and
composed primarily of fine-grained ma-
terial containing only scattered Corbulas.
Because Corbula is a burrowing clam, the
latter facies represents the burial of undis-
turbed sediment. In contrast, the other
facies implies that fine-grained sediment
was removed from the eastern part of the
shelf by winnowing action, leaving behind
a reworked concentration of Corbula shells.
The asscciated ripple marks are also in
keeping with this conclusion. The irregu-
larity of the ripple trends and the asym-
metrical ripple form imply that currents,
rather than waves, were the reworking
agent.

EVAPORITES

The beds of Units 1 and 5 of the upper
Glen Rose are largely of evaporitic origin,
although evaporites are never seen at the
surface. Because of similarity in their ap-
pearance and origin, only Unit 1, the in-
terval immediately above the Corbula bed,
is considered here.

Gypsum, as identified by X-ray analy-
sis, is the major subsurface constituent of
the interval (Unit 1) throughout the west-

ern part of the investigated area and oc-
curs as two beds with a combined thick-
ness of no more than 15 feet (fig. 13). The
entire interval reaches a maximum sub-
surface thickness of 25 feet in Bandera
County. If the interval is above the zone
of permanent water saturation, as is the
case at the outcrop, the gypsum beds have
been leached by downward-percolating
ground waters, resulting in an incom-
plete, collapsed section (fig. 13). The re-
moval of evaporites has caused uneven
settling of claystone beds formerly between
or overlying the gypsum and the attendant
development of extension joints and frac-
tures in these dislocated rocks. Because
initial permeabilities have been enhanced
by such jointing and fracturing, the inter-
val is an excellent aquifer and contributes
much of the local water supply. Where
these rocks crop out in valleys, seeps and
springs are common, and some discharge
large velumes of water during rainy sea-
sons.

The outcrop of this interval is prominent
because of the buff-orange color of two
layers of recrystallized claystone and dolo-
mite that originally were adjacent to or in-
tercalated with the gypsum beds. The color
probably results from oxidation of minor
amounts of iron-bearing minerals. Other
features within the interval include small
faults (Pl. XV, A), contorted beds, ce-
mented or infilled joints, and bedding
planes which weather differentially to pro-
duce striking “boxwork patterns” (PL
XV, B). All of these features are a result
of processes related to subaerial erosion of
the present-day terrane and may serve as
criteria in identifying ancient solution
zones and associated erosional unconformi-
ties.

Deposits downdip or seaward of the
gypsum beds are outside the area of in-
vestigation; consequently, no equivalent
restrictive barriers are known to account
for evaporite deposition. The necessary re-
striction of water circulation may have
been provided by shallow depth. Since
shallow waters prevailed in the investi-
gated area during much of Glen Rose time,
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FIG. 13. Surface and subsurface relations of evaporite aquifer.

the evaporites may be precipitates result-
ing largely from excessive evaporation
during periods of extreme aridity.

TRINITY-FREDERICKSBURG BOUNDARY

The relationship between terminal Glen
Rose clay and dolomite and basal Freder-
icksburg nodular limestone is one of prob-
able disconformity over much of the in-
vestigated area. Evidence for this rela-
tionship consists of numerous locally-bored
surfaces on uppermost Glen Rose beds and
eastward thinning of the Glen Rose clay
and dolomite section (Unit 8, fig. 10), as
opposed to fairly uniform thickness of
older Glen Rose units. This thinning is at-
tributed to progressive eastward removal
of older beds by subaerial erosion toward
the more positive San Marcos Arch located
in Blanco, Hays, and Travis counties.

The interpretation of a disconformity
developed on terminal Glen Rose deposits
is in agreement with conclusions presented
by Moore (1964) and Lozo and Smith
(1964) from later investigations. Moore
(pp- 6, 11) reported that Fredericksburg
limestone unconformably onlaps Glen
Rose deposits in Hays, Blanco, and Travis
counties, and that farther northward in
Williamson and Burnet counties the upper
Glen Rose surface is marked by pholad
borings, mudcracks, dinosaur tracks, and
local occurrences of reworked bored peb-
bles and boulders in overlying beds. West-
ward in Real and Edwards counties, Lozo
and Smith (pp. 291, 293) reported that
basal Fredericksburg nodular limestone
rests disconformably on bored, oyster-in-

crusted, weathered dolomite of the upper
Glen Rose.



SUMMARY OF GEOLOGIC
INTERPRETATIONS

The bulk of this report has been con-
cerned with describing the physical strati-
graphy of Trinity deposits and presenting
environmental interpretations of confined
stratigraphic mntervals. With this as back-
ground, the succeeding discussion dwells
on broad environmental elements which
appear to have exerted a significant influ-
ence on Trinity sedimentation. The inter-
pretations presented bear on cyclicity of
sedimentation, dynamic variability of the
shelf regimen, the more important aspects
of the climate, and the topographic char-
acter of the bordering land.

CYCLICITY OF SEDIMENTATION

The northward onlap of Trinity deposits
over pre-Cretaceous rocks throughout the
outcrop area indicates prolonged sea en-
croachment of the Llano Uplift during
Trinity time. Within the massive wedge of
Trinity deposits, the basal sands (Syca-
more and Hensel) are iitial, compara-

Nw

¢ LLANO UPLIFT

tively thin accumulations which preceded
and accompanied a prolonged marine
transgression, and do not reflect a high de-
gree of deposition on land or sediment in-
flux into the Trinity sea. The overlying
thick marine Trinity deposits are viewed as
shelf accretions that more or less kept
apace of the rising sea, with carbonates
becoming the prominent sediment type. By
the end of Trinity time, the Llano Uplift,
if any part remained above water, was a
negligible sediment contributor.

A detailed analysis of Trinity deposits
indicates that the overall marine trans-
gression was mnot sustained throughout
Trinity time but was characterized by in-
terruptions. When viewed intemally, the
Trinity is not a single wedge but a com-
posite of three overlapping wedges—the
lower, middle, and upper Trinity (fig. 14).
Each wedge is characterized by basal ter-
rigenous clastics followed by marine car-
bonates, and the deposits of each wedge
are terminated by a disconformity. These
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disconformities, plus the upward grada-
tion of terrigenous-to-carbonate rocks
within each wedge—and the resulting con-
frast in contiguous rock types between
wedges—indicate that the overall Trinity
transgression was cyclic rather than con-
tinuous and that the lower, middle, and
upper Trinity represent three depositional
cycles (fig. 14). Each cycle corresponds to
a marine transgression that was terminated
by regression or relative equilibrium of
land and sea.

The regressive phases of the Trinity
cycles have only limited vertical expres-
sion 1in the rock record; hence, their dura-
tion and overall effect on sedimentation
were minor relative to the preceding trans-
gressions. With the exception of the mid-
dle Trinity, the cycles are actually deposi-
tional half cycles and are graphically
illustrated by pronounced asymmetry (fig.
14). Areally, the most pronounced regres-
sion 1s that inferred from the extensive
seaward growth of Cow Creek beaches at
the close of middle Trinity time. The re-
sulting enlargement of the land area
through this beach growth accounts for
the seaward-extending tongue of Hensel
Sand between regressive carbonates of the
underlying Cow Creek and transgressive
carbonates of the overlymg Glen Rose.
Regressive phases of the other cycles are
inferred by terminal disconformities, but
no other significant regressive deposits are
preserved within the Trinity.

VARIABILITY OF SHELF REGIMEN

The lateral continuity of individual ma-
rine beds and facies within the outcrop
Trinity suggests uniformity of deposition
on a broad shelf with gentle seaward slope.
However, significant vertical variations in
rock types, sedimentary features, and type
and abundance of fossils indicate change-
ability of water circulation over the shelf.
Water depth, which largely determines the
magnitude of wave and current action on
modern shelves, can be demonstrated for
some Trinity deposits and is postulated as
the dominant factor in controlling water

circulation. The following discussion is in-
tended to summarize views on extremes of
Trinity water circulation and provide a
frame of reference for the range of Trin-
ity depositional environments.

LOW-ENERGY DEPOSITS

Lower Glen Rose intertidal deposits
exemplify the low-energy shelf regimen
and are characterized by the widespread
persistence of individual beds and an
abundance of revealing sedimentary fea-
tures. The evidence within the intertidal
sequence suggests that the indicated low
level of water circulation was controlled
by very shallow water over an almost flat
shelf. In this setting blue-green algae spread
across the sea bottom and built stroma-
tolitic accretions over hundreds of square
miles, low relief ripples probably formed
by prevailing winds disturbed the sedi-
ments over a comparable area, and large
land-dwelling dinosaurs walked or waded
scores of miles from the average Trinity
shoreline. Intermittently, the shallow wa-
ters apparently retreated from the shelf,
possibly during low tides or periods of per-
sistent offshore winds, and sediments were
exposed, at least briefly, to become semi-
consolidated or lithified under atmospheric
conditions. The evidence for this includes
mudcracks, oyster shells incrusted onto
bedding planes, surfaces bored by clams
that required a firm substrate for habita-
tion, and rims around dinosaur tracks in-
dicating sediments were in a cohesive,
plastic state when the tracks were formed.
In numerous localities, combinations of
these features occur on the same bedding
surface. Within the low dynamic threshold
represented by the intertidal zone, the net
result of shallow-water sedimentation in-
terrupted by repeated sea floor exposure
has been stratigraphic continuity of dis-
tinctive beds that certainly rank among
the most interesting and revealing within
the Trinity.

After deposition of the intertidal beds,
water circulation on the Trinity shelf im-
proved vastly as indicated by the profuse
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fauna in the overlying 10- to 20-foot se-
quence of nodular limestone (Salenia tex-
ana zone). However, this efficient circula-
tion did not persist during accumulation
of the succeeding deposits. The overlying
mid-Glen Rose evaporites—and the simi-
lar section 200 feet higher in the same
formation—are considered to be additional
examples of deposits resulting from a low-
energy shelf regimen. The evaporites
themselves are first-hand evidence of re-
stricted water circulation, regardless of
whether the condition was brought about
by isolation of deeper waters behind bar-
riers or excessive evaporation of shallow
waters during extreme aridity. Unlike the
intertidal zone, however, individual beds
of the evaporite intervals are virtually im-
possible to trace for any distance on the
surface due to subsurface removal of the
evaporites and the resulting collapse and
alteration of intervening and overlying
beds. A few cores obtained from the unal-
tered mid-Glen Rose evaporite section sug-
gest that diagenesis is responsible for ob-
scuring continuity of bedding. Otherwise,
individual beds of both evaporite intervals
would possibly be traceable over broad
areas, like the Corbula bed which per-
sists at the base of the lower interval for
thousands of square miles.

HIGH-ENERGY DEPOSITS

Cow Creek beach deposits of the middle
Trinity provide a notable record of the
high-energy shelf regimen. Events prior
to deposition of the underlying Hammett
Shale, that is, steepening of the shelf slope
by tectonism (or erosional steepening of
the land surface) and a relative rise in sea
level, set the stage for middle Trinity de-
position. Although the vertical sequence of
Hammett Shale and Cow Creek Limestone
reflects progressive shallowing, the steep
shelf profile was apparently maintained
during middle Trinity deposition, allow-
ing strong currents to swing in close to
shoreline and large waves to break against
the mainland. Under these conditions, the
three seaward-shifting facies of the Cow

Creck developed, and the land area was
extended significantly seaward by pro-
gradation of beach deposits.

Some beaches of the Gulf of Mexico and
Atlantic Ocean are apparently being
formed under conditions similar to those
of the Cow Creek. Some parts of Galves-
ton Island, for example, have grown sea-
ward over a distance of 2 to 3 miles in the
last several thousand years through the
addition of terrigenous sediment swept in
by currents and waves (LeBlanc and
Hodgson, 1959, pp. 213, 215). Elsewhere,
in the Bahama Islands area, numerous
capes are being enlarged through the ini-
tial deposition of festoon cross-bedded car-
bonate sand, where currents are checked,
and succeeding accretions of uniformly
sloping beach beds added as a result of
wave action (Ball, 1967, pp. 584-585).
The resulting sequence of cross-bedding,
as illustrated by Ball, is strikingly similar
to that of the Cow Creek.

The average thickness of Cow Creek
beach deposits, which represent upbuild-
ing of the beach face to sea level, suggests
that water depth a short distance in front
of middle Trinity beaches was on the or-
der of 20 feet. The Cow Creek beds de-
posited under such efficient circulatory
conditions are characterized by local lenti-
cularity, but individual facies are wide-
spread. In contrast to some middle Glen
Rose beds that extend over hundreds of
square miles, individual beds of the Cow
Creek beach sequence are traceable only
over several hundred square feet or less.

Reefs of the lower Glen Rose are an-
other example of high-energy deposits re-
sulting from a high degree of water circu-
lation. The evidence for this is a varied
fauna containing large rudists and corals
that depended on efficient water circula-
tion for food supply, the abundance of
coarse, abraded shell debris in the larger
reefs, and shingle beach-like accretions
fringing or overlying the larger reefs. With
regard to the latter, coarse cobbles of worn,
coral heads and rudists testify to the
strength and ability of currents to scour
and transport sediment, as does festooned
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cross-bedding that is present locally in the
flanking reef accretions at Red Bluff Creek
and “The Narrows.” Relative to the en-
ergy level of the environment, the matrix
lime mud in the small mounds is mislead-
ing;, however, it is compatible within this
setting when viewed as accumulations in
locally protected sites between rudists,
which probably served as baffles to re-
duce currents. Some idea of water depth
proximal to the seaward front of Trinity
reefs is afforded by the 15-foot sequence
of reef-flank accretions at Red Bluff Creek.
Although it cannot be demonstrated that
these accretions built up to sea level, with
near uniform dips of approximately 7 de-
grees, the thickness of the sequence estab-
lishes a minimum water depth at this lo-
cality. Water depth of this magnitude and
the resulting efficient circulation, as in the
case of Cow Creek beaches, has led to an
association of facies characterized by vari-
ability and discontinuity of individual
beds.

CLIMATIC SETTING

The aspects of Trinity climate to be con-
sidered in the following discussion are
those of humidity and temperature.

The several accumulations of paleo-
caliche and gypsum in the Trinity are in-
dicative of excessive evaporation. Al-
though it is theoretically possible to have
high annual evaporation in regions of
abundant rainfall, it seems improbable
that deposits as thick as these could have
been formed during dry seasonal varia-
tions of a humid climate. The most reason-
able interpretation is that of an arid-to-
semi-arid climate. Since the gypsum and
caliche deposits occur at several horizons
in the Trinity, they probably indicate a
prevalent climate of low rainfall punctu-
ated by periods of excessive aridity. Con-
trary to this statement is the evidence of
mild climate indicated by the occurrence
of cycad fossils in the Hensel

An insight into Trinity water tempera-
tures is afforded at some stratigraphic
levels by rudist and coral faunas and in-

ferences drawn from their world-wide dis-
tribution. Reef-building rudists, as sum-
marized by Palmer (1928, p. 18), lived
abundantly in a belt lying mostly north of
the present equator and extending from the
western Himalayas—southern Europe re-
gion westward across the West Indies into
northern Venezuela, Mexico, Texas, and
Baja California. Modem colonial coerals
are reported to attain populous growth
only in tropical and sub-tropical waters
(Wells, 1956, p. 358). If modern colomal
coral distributions are considered an-
alogous to those associated with Lower
Cretaceous rudist reefs, they would sug-
gest that Trinity seas were warm, at least
during times of reef growth. The subject
of paleo-temperatures of Trinity sea water
could be further pursued through oxygen-
isotope analysis of calcitic shell fragments,
but the question of variability of atmos-
pheric temperature would still remain.
Generally, mean air temperature would be
expected to cormrelate with mean water
temperature in shallow bodies of water not
subject to rapid circulatory exchange and
thermal depth gradients. In south Florida,
for example, Lloyd (1964, pp. 86-87, and
personal communication, 1967) reported
that mean water temperature of Florida
Bay and the open reef tract are approxi-
mately equal to the annual mean tempera-
ture of the atmosphere.

CHARACTER AND INFLUENCE OF
LAND ON SEDIMENTATION

The Llano Uplift adjacent to the Trin-
ity shelf apparently did not have the form
of a low-lying coastal plain, as implied by
the slope of the unconformity developed
on Paleozoic rocks, the similar upper slope
of the overlying sand mantle near its ma-
rine interface, and the hilly relief of the
unconformity. The overall slope of the un-
conformity is as much as 30 feet per mile,
relative to Trinity datums, with local re-
lief of buried hills ranging up to 150 feet.
Prior to burial, some of these hills must
have been islands along the coast of the
advancing sea. These characteristics indi-
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cate that the coastal terrane of the Trinity
was quite irregular, with an average sca-
ward slope several times greater than most
of the present-day low-lying Gulf Coastal
Plain.

All the foregoing factors formed a com-
bination which did not favor extensive
erosion of the continent. In contrast to the
modern Gulf Coastal Plain and its pre-
vailing depositional regimen, the streams
draining the Llano Uplift during Trinity
time were relatively insignificant as sedi-
ment contributors. They built no large
deltas and were ineffectual in reducing the
land to a typical alluvial coastal plain; if
any drained a large continental interior,
this is not evident from the bulk of their de-
posits. Chiefly because of the minor sedi-
ment contribution of streams, the Trinity
shelf was largely a locale of marine sedi-

mentation with carbonate deposits com-
monly extending to the shoreline. The re-
constructed shore and near-shore deposi-
tional environments therefore appear to be
intermediate between those of the present-
day terrigenous sedimentary domain of
the western Gulf Coast and the pure car-
bonate-type sedimentary province of south-
ern Florida and the Bahamas, but deposi-
tional features are similar as a result of
controlling hydrodynamic forces in each
province. Within the Trinity depositional
setting, restricted alluvial fans formed on-
shore, and variations in water depth and
circulation over a broad shelf of gentle
relief led to the development of contrasting
morphologic features such as reefs, coquina
beaches, and expansive carbonate tidal flats
along a shore of relatively steep slope and
hummocky relief.
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Lower Cretaceous Trinity Deposits, Central Texas Plate 1

(B) Laminated pedestal structure developed beneath siliceous pebble, x4

Thin-section views of upper Sycamore caliche exposed on Lawson Ranch, approximately 4 miles
southeast of Cypress Mill, Blanco County, Texas.



Plan view of Sycamore conglomerate showing clam borings in beveled Paleozoic limestone and dolomite pebbles. This surface of discon-
formity, a result of marine transgression over Lower Trinity alluvial deposits, displays this character locally in exposures north of the Colo-
rado River, Burnet County, where cemented conglomerates are in contact with Hammett Shale.
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Lower Cretaceous Trinity Deposits, Central Texas Plate III

Typical reworked pebbles associated with L.ower Trinity disconformity

Top view (a) and side view (d) of bored Ellenburger pebble showing section across borings and
broken steinkerns of clams in growth attitude, x08. Stereoscopic views of boring pelecypods, right
valve (b) and dorsal view (c), x1.5.



Lower Cretaceous Trinity Deposits, Central Texas 43

Lower Cretaceous Trinity Deposits, Central Texas Plate IV

(A) Dip view of foreshore and backshore beds and intervening beach crest

(B) View down channel of Cow Creek showing offlapping sequence of dipping foreshore beds

Beach stratification in Cow Creek Limestone, in channel of Cow Creek, one-half mile east of road
crossing to Hensel ranchhouse, Travis County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate V

(A) Irregular, subaerially eroded surface of disconformity overlain by continental deposits

(B) Calcareous mounds or possible dunes resting on foreshore beach beds.
Relief of mounds ranges up to 5 feet.

Features along upper Cow Creek disconformity in channel of Cow Creek, one-half mile east of road
crossing to Hensel ranchhouse, Travis County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate VI

(B) Close-up view of nodular caliche showing vertical solution cracks filled with red and green clay

Continental deposits of Hensel Formation. Locality is on Cow Creek, one-half mile east of road
crossing to Hensel ranchhouse, Travis County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate VII

Fossils from Glen Rose Formation

(a) Orbitolina texana (Roemer), top view (stereoscopic pair), x3; (b) and (c) Porocystis globularis
(Giebel), basal and top views (stereoscopic pairs), x0.7, (d) Enallaster obliquarus Clarke, apical
view, x1.5; (e) and (f) Loriolia rosana Cook, apical and side views, x1.5; (g) (stereoscopic pair)
and (h) Salenia texana Credner, apical and side views, 0.7, (i) and (j) Meretrix hanseni Whitney,
left side and dorsal views of steinkern, x0.7; (k) Douvilleiceras sp., side view of steinkern, x0.7.
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Lower Cretaceous Trinity Deposits, Central Texas Plate VIII

Fossils from Glen Rose Formation

(1) Lunaria ? pedernalis (Roemer), apertural view of steinkern, x0.7, (m) caprinid, side view
of right valve, x0.7, (n) Knemiceras sp., side view of steinkern, 0.7, (o) and (p) Toucasia sp., side
dorsal views of left valve, x0.7.
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Lower Cretaceous Trinity Deposits, Central Texas Plate IX

(B) Eroded edge of large tabular reef

Rudist reefs in lower member of Glen Rose Formation. Exposures are in channel of Red Bluff Creek,
15 miles south of the community of Pipe Creek, Bandera County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate X

(B) Polished slab of caprinid debris. Cross section of shell in lower right shows typical
canal structure.

Typical fossil constituents of lower Glen Rose reefs, Red Bluff Creek, Bandera County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate XI

(A) Comparison of a Glen Rose stromatolite (bottom) with modern one (top) collected
from mangrove mudflat in Florida Bay, south Florida.

(B) Cross-section view of crenulated stromatolite with overhanging face. Locality is on
Seco Creek, one-quarter mile north of Utopia road crossing, Medina County, Texas.

Detail views of algal heads in lower Glen Rose intertidal sequence.
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Lower Cretaceous Trinity Deposits, Central Texas Plate XII

(A) Rippled bar deposits. Rippled beds are typically present immediately below the algal deposits,
but these are seen in overlying, lenticular bar deposits which thicken toward left of photograph.
The ripple crests in this case wrap around the face of the bar as a probable result of wave refraction.

(B) Hummocky surface of stromatolitic algal deposits. Diverse morphological patterns of algal heads
developed locally on this surface include low-relief domal colonies, long windrows, and
irregular ridges.

Lower Glen Rose intertidal deposits, Hondo Creek, three-quarters mile south of Tarpley, Bandera
County, Texas.
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Lower Cretaceous Trinity Deposits, Central Texas Plate XIII

(A) Surface bored by clams, Hondo Creek, three-quarters mile south of Tarpley, Bandera County,
Texas. This surface is developed locally over the crest of rippled bar deposits shown
in Plate 12, A.

(B) Mudecracked surface bored by clams, Sabinal River, La Jita Girl Scout Camp, Utopia, Uvalde
County, Texas. Dinosaur tracks are also present on this surface.

Diagnostic sedimentary features of lower Glen Rose intertidal deposits. These features, which are
present on initially “hard” surfaces, are attributed to subaerial exposure of the sea floor, perhaps

during low tide.
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Lower Cretaceous Trinity Deposits, Central Texas Plate X1V

(A) Ripple marks in channel of Hamilton Creek, three-quarters mile east of juncture with Peder-
nales River, Travis County, Texas. The broadness, irregularity, and asymmetry of the ripples
are attributed to a current origin.

(B) Casts of Corbula martinae, x2. Preferential orientation of the casts (parallel to bottom of page)
is probably due to alignment by currents.

Typical features of reworked Corbula bed.
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Lower Cretaceous Trinity Deposits, Central Texas Plate XV

(A) Parallel joints and small faults in lime mudstone produced by settling attending removal
of evaporites from underlying rubbly, contorted beds. Locality is on branch of Benton Creek, about
1 mile north of Medina, Bandera County, Texas.

(B) Large slump block displaying boxwork structure formed by secondary deposits along inter-
secting joints and bedding planes. Locality is on Seco Creek, 1 mile north of
Utopia road crossing, Uvalde County, Texas.

Vadose features of evaporite interval. The features are confined to a well-developed aquifer of
ground-water circulation and are a result of collapse due to leaching of bedded evaporites.



APPENDIX

The stratigraphic sections of figures 9, 10, and 11 were constructed by piecing to-
gether individual measured sections for each major locality. Because the thickness of
the deposits involved ranges up to 500 feet, several individual sections (as indicated by
capital letters) were usually required to construct the composite section for each major
locality. The individual sections making up the composites range up to a maximum of
nine.

The following detailed locality maps are included in case the reader wishes to ex-
amine any of the individual measured sections. To determine the locality of any specific
individual section, consult the ingert locality map of the appropriate cross section and
then refer to the indicated maps in the Appendix for the desired major locality. The indi-
vidual sections are then shown on the major locality maps by dotted lines referenced by
capital letters (such as Section D) and in many cases by the ranch or land owner.
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Fic. 10. Stratigraphic strike
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REFER TO LOCALITY MAPS: D, E, F,
AND G IN APPENDIX FOR LOCALITIES
OF INDIVIDUAL SECTIONS.
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F1c. 11. Stratigraphic dip section of upper Glen Rose deposits.
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