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Permian s t r a t a  in t h e  Texas Panhandle exhibit a variety of deformation s ty les  t h a t  a r e  

a t t r ibuted t o  tec tonic  s t resses  a s  well as t o  collapse caused by evapor i te  dissolution. A t  

Caprock Canyons S t a t e  Park,  deformation s t ruc tu res  above sa l t  dissolution zones include veins, 

f au l t s ,  and folds. The geometry  and distribution of t h e  s t ruc tu res  indicate  t h a t  sys temat ic  

regional joints older than t h e  dissolution collapse have influenced sa l t  dissolution. A t  Palo  

Duro Canyon S t a t e  Park, subparallel cylindrical folds and minor reverse  faul ts  indicate east-  

northeast  and west-northwest (075" t o  255") compression re la ted  t o  regional folding. Evaporite 

dissolution and subsequent collapse of s t r a t a  have also deformed Permian s t r a t a  and developed 

closed synclinal depressions, faults ,  and veins. Along t h e  Canadian River valley in P o t t e r  

County ,  Permian and Triassic s t r a t a  a r e  folded over fault-bounded basement  highs a s  t h e  result 

of e i ther  differential  compaction or  recurrent  motion on basement  faults. Synclinal depres- 

sions, c l a s t i c  plugs, and c las t i c  dikes caused by dissolution-induced collapse processes also 

occur throughout this  area.  

Keywords: Texas Panhandle, Permian,  s t ructure ,  f rac tures ,  folding, sa l t  dissolution 

INTRODUCTION 

Permian s t r a t a  cropping ou t  in t h e  Texas Panhandle display a var ie ty  of s t ructura l  s ty les  

t h a t  have resulted from both tec tonic  and nontectonic deformation. Recognition of t h e  

d i f ferent  deformational  styles is  of part icular  in te res t  because Permian evapor i te  s t r a t a  within 

t h e  Palo  Duro Basin, Texas Panhandle, a r e  currently being investigated a s  a potential  s to rage  

s i t e  for  high-level nuclear wastes. Even though tec tonic  folding of Permian s t r a t a  is  well 

developed in some areas,  recent  nontectonic folding caused by evapor i te  dissolution and 

collapse of overlying s t r a t a  has been superimposed on preexisting folds. Thus, tec tonic  folds 

a r e  diff icult  t o  distinguish f rom nontectonic structures.  

Dissolution of evapor i te  s t r a t a  is  an  ac t ive  process in the  Texas Panhandle. Recognition 

of sa l t  dissolution has been based on t h e  s t ra t igraphic  evidence, t h e  identif ication of su r face  

collapse fea tures ,  and t h e  presence of sal ine springs (Gustavson and others,  1980; Gustavson 

and others ,  1982; Gustavson and Finley, in press). Locally, s t ructures  such a s  low-amplitude, 

long-wavelength folds, sinkholes, breccia pipes, and synclinal depressions have been a t t r ibu ted  

t o  dissolution and vert ical  subsidence or collapse of a s  much a s  70 m (Gustavson and others,  

1982; Goldstein and Collins, 1984). Even though deformation caused by dissolution-induced 

collapse is common in t h e  Texas Panhandle, subparallel cylindrical folds of t ec ton ic  origin have 



been t r aced  f o r  several  ki lometers in outcrop. Drape folds bounding regional basement  uplifts 

have also been observed at t h e  surface.  

This outcrop study addresses deformation of Permian s t r a t a  in th ree  a reas  within t h e  

Texas Panhandle: (1) Caprock Canyons S t a t e  Park,  Briscoe County, (2) Palo  Duro Canyon S t a t e  

Park, Randall County, and ( 3 )  Canadian River valley, Po t t e r ,  Moore, Carson, and Hutchinson 

Counties. Permian s t r a t a  in each of these  a reas  display a dist inct  s ty le  of deformation. This 

investigation shows t h a t  many deformational  f ea tu res  in t h e  Texas Panhandle result  f rom 

evapor i te  dissolution collapse and t h a t  preexisting joints and folds have influenced dissolution 

processes. Furthermore,  an  angular unconformity between Permian and Triassic s t r a t a  provides 

evidence of the  s t ructura l  history of Randall County,  a s  d o  regionally folded Permian and 

Triassic s t r a t a  along t h e  Canadian River valley. 

STRUCTURAL SETTING 

Areas  investigated in this  study a r e  within t h e  Palo Duro Basin and on t h e  Amarillo Uplift 

(fig. 13. The Palo  Duro Basin, a n  e lement  of t h e  fate Paleozoic Ancestral  Rocky Mountains 

s t ructura l  system, is  bordered on t h e  north by t h e  Amarillo Uplift,  on t h e  south by t h e  Matador 

Arch, and on t h e  west  by t h e  Sierra  Grande Uplif t  and t h e  Tucumcari  Basin. These basement  

uplifts a r e  f au l t  controlled. Various types  of f au l t  motions proposed t o  explain t h e  development 

of t h e  Amarillo-Wichita Uplift include t ranscurrent  motions along t h e  eas ternmost  segment  

(Wickham, 1978), low-angle thrusting along the  cen t ra l  segment  (Brewer and others,  1983), and 

high-angle reverse  fault ing along t h e  western  segment  (Goldstein, 1981). 

The Palo  Duro Basin encompasses a n  a r e a  of approximately 50,000 km2. The basin may 

have formed l a t e  in t h e  Mississippian Period, and i t s  development continued in to  t h e  Permian 

Period (Totten, 1956). During basin development, uplifts bounding t h e  basin were  subaerially 

exposed, and coarse  arkosic debris was transported into t h e  basin (Dutton, 1980). Af te r  t h e  

Wolfcampian Epoch, t h e  basin comprised marginal subtidal and supratidal marine evapor i te  

environments, which existed throughout t h e  res t  of t h e  Permian Period (Presley, 1981). Middle 

and Upper Permian evaporite deposits comprise red mudstone, anhydrite, and bedded halite, 

Some faul ts  a r e  known t o  displace Upper Permian s t r a t a  at t h e  margins of t h e  basin and t h e  

basement uplifts. The absence of verif iable f au l t  displacements of Upper Permian s t r a t a  within 

t h e  centra l  Pa lo  Duro Basin suggests t h a t  t h e  basin was structurally quiescent during evapor i te  

deposition. Evidence of various s ty les  of nontectonic deformation caused by evapor i te  

dissoiution and collapse of s t r a t a  also exists  throughout t h e  Texas Panhandle in t h e  form of 

various s t ructures  tha t  a r e  superimposed on existing tec tonic  structures.  In some areas ,  

t ec ton ic  and nontectonic deformation may have been contemporaneous. 
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Figure 1. Structural sett ing and study areas, Texas Panhandle. (A) Regional s t ructure  map. 
(B) Locations of study areas. 



CAPRBCK CANYONS STATE PARK 

Gaprock Canyons  S t a t e  P a r k  s t r add le s  t h e  e a s t e r n  High Plains Escarpment ,  which h a s  

rel ief  of up t o  20Q m in t h e  park  a r e a  (fig. 1). T h e r e  a r e  exce l l en t  exposures  of Upper Pe rmian  

s t r a t a  along t h e  e s c a r p m e n t  and  in incised s t r e a m s  t h a t  dra in  eas tward  i n t o  t h e  Rolling Plains. 

E a s t  of t h e  park, exposures  a r e  rare.  Exposed in t h e  park (fig. 2) a r e  t h e  Upper Pe rmian  

Whitehorse Sands tone  and t h e  Cloud Chief  Gypsum of t h e  Whitehorse Group. These  un i t s  

cons is t  of in terbedded shale,  s i l ts tone,  sandstone,  and  gypsum beds. In t h i s  a r ea ,  gypsum beds 

nea r  t h e  t o p  of t h e  Whitehorse Croup a r e  as th ick  as 4 m. Massive, thickly bedded sands tones  

and  sha les  of t h e  Pe rmian  Q u a r t e r m a s t e r  Fo rma t ion  over l ie  t h e  Whitehorse Group. Sandstones,  

shales, and cong lomera t e s  of t h e  Tr iass ic  Dockum Group over l ie  Pe rmian  s t r a t a .  T h e  Tr iass ic  

rocks  a r e  capped  by Te r t i a ry  Ogal la la  s ed imen t s  and  cal iche.  A z o n e  of regional  salt dissolution 

ex i s t s  benea th  t h e  park  (Gustavson and o thers ,  1982). 

Deformat ion  of t h e  Pe rmian  s t r a t a  a t  Caprock  Canyons  S t a t e  P a r k  has  been  descr ibed  in  

de t a i l  by Goldstein and Coll ins (1984). Two zones  def ined  on t h e  basis of t y p e  of de fo rma t ion  

s t r u c t u r e s  ex i s t  within t h e  park  (dig. 2). T h e  upper, re la t ive ly  undeformed zone  occu r s  in t h e  

Quartermaster Fm. 
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Figure  2. Stra t igraphy and  deforrnat ional  e l e m e n t s  at Gaprock Canyons  S t a t e  Park.  



massive, thickly bedded sandstones in t h e  upper pa r t  of t h e  Permian Quar termaster  Formation 

and is character ized primarily by joints, The lower, deformed zone of s t r a t a  encompasses t h e  

Whitehorse Group and lower Quar termaster  Formation (fig. 2). In this zone, thinly bedded 

si l tstones and sandstones a r e  interlayered with gypsum beds. Within t h e  more  deformed rocks 

of this lower zone a r e  normal faults ,  reverse faults ,  and gypsum veins along fau l t  contacts,  

bedding planes, and joint surfaces. Folds and funnel-shaped depressions also occur in t h e  lower 

zone. 

Joints  

Systemat ic  and nonsystematic joints character ize  t h e  undeformed zone (fig. 2). System- 

a t i c  joints a r e  vertical, evenly spaced, regularly oriented f ractures .  The predominant s t r ike  of 

t h e  sys temat ic  joint se t s  i s  north, northeast, and east. A less significant s e t  str ikes northwest. 

One or more of these  four  sets of joints predominate within di f ferent  domains in t h e  park area.  

Hackle fringes and plume s t ructures  on joint f a c e s  a r e  evidence of horizontal propagation 

prompted by horizontal extension, Nonsystematic joints a r e  curved and irregularly spaced, 

show no preferred orientation, and t runca te  against sys temat ic  joints. Many nonsystematic 

joints have surface  markings t h a t  indicate vert ical  propagation (Goldstein, 1982). 

Zones of closely spaced systemat ic  joints exist  throughout t h e  park (Collins, 1983a). Joint  

zones as wide a s  40 m extend vert ically through Permian and Triassic beds and horizontally fo r  

at leas t  1 km. Within joint zones, joint density averages  5 joints per mete r  fo r  sandstone beds 

3 m thick; away from joint zones, densities average from 0 t o  1.5 joints per mete r  fo r  3-m- 

thick sandstone beds. Bed thickness a f f e c t s  t h e  spacing of t h e  joints within and beyond zones of 

closeiy spaced joints. In general, joint densities in sandstone and siktstone beds less than 1 m 

thick increase a s  t h e  bed thickness decreases. Joint  densities a r e  almost constant  for  beds 

thicker than 1 m. 

Veins and Faul ts  

Three types of gypsum veins exist  in t h e  deformed zone of s t ra ta :  they a r e  e i ther  

vertical, parallel t o  bedding, or c u t  t h e  bedding a t  30' t o  60° (fig. 3). The veins a r e  composed of 

fibrous gypsum bisected by a medial scar. They seem t o  be  similar t o  a type described by 

Ramsay (1980) a s  crack-seal veins, in which t h e  medial sca r  probably marks t h e  s i t e  of ear l ies t  

mineralization, and new mater ia l  is added at t h e  vein-wall rock contact .  Mineral f ibers  denote  

t h e  direction of maximum principal extension when they were  added t o  t h e  vein, 



The gypsum f ibers  in t h e  vert ical  veins a r e  horizontal, indicating t h a t  these  veins formed 

during horizontal extension and probably fill  preexisting joints. Mineral f ibers  of the  inclined 

and horizontal veins a r e  vert ical ,  indicating t h a t  mineralization occurred during ver t ica l  

extension. 

Small-scale normal and reverse  fau l t s  a r e  common within t h e  deformed zone of Quarter-  

master  and Whitehorse s t r a t a  and a r e  also gypsum filled. Faul t  displacements a r e  typically less 

than 0.5 m. Normal f au l t s  a r e  oriented in all directions (fig. 4A) but  dominantly dip north, 

south, eas t ,  and west. No re la t ive  a g e  d a t a  a r e  available fo r  these  fau l t  sets. The orientat ions 

reveal  e i ther  a north-south horizontal maximum principal extension followed by a n  east-west  

extension or  vice versa. Reverse  faul ts  (fig. 4B) display orientat ions similar t o  those of t h e  

normal faults. Most of t h e  reverse  faul ts  exhibit northward, southward, and eastward dips. 

Reverse  faul ts  a r e  less common than normal faults .  Inclined veins (fig. 4C) have orientat ions 

similar t o  those of faults ,  which suggests t h a t  they a r e  filled faults. Nearly all veins along fau l t  

planes display undeformed crystals  adjacent  to t h e  con tac t  between t h e  vein and wall rock, 

indicating t h a t  f au l t  movement  predated mineralization. 

Figure 3. Gypsum veins in Permian s t r a t a  at Caprock Canyons S t a t e  Park. 
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The  geometry of vein intersections also reveals t h a t  faulting predated mineralization 

(Goldstein, 1982). Mineral f ibers of adjacent horizontal and inclined veins merge without a 

break. Some veins a r e  composed of sigmoidal fibers, documenting t h a t  simple shear occurred 

during vein growth. Most vein fibers, however, a r e  s t ra ight  and do not  devia te  f rom vertical  by 

Whole domo~n Normal  faults 

A. 
Contour intervol 

Whole domain Inclined veins 
N n = 457 

L. 
Contour interval 

Whole dorno~n Reverse faults 
N n 2 3 8  

B. 
Contour interval 

Whole domoin Ver t ica l  veins 
N n = 186 

Figure 4. bower-hemisphere, equal-area net  plots of faul ts  and veins mapped at Caprock 
Canyons S t a t e  Park (fig. 5). (A) Poles t o  normal faul ts  with average dip t o  50'. (B) Poles t o  
reverse fau l t s  with average dip of 40". (C) Poles t o  inclined veins with average dip of 40'. 
(D) Azimuths of vert ical  veins a r e  plotted as a rose diagram (from Goldstein and Collins, 1984). 



more than about 10" in t h e  horizontal and inclined veins--evidence t h a t  these  veins were  formed 

by vert ical  extension. Where veins in tersect ,  ver t ica l  veins a r e  everywhere c u t  by inclined 

veins and nearly everywhere c u t  by t h e  horizontal veins. 

Folds 

Chaot ic  folds in t h e  upper zone of deformed s t r a t a  cause  t h e  Quar termaster  and 

Whitehorse beds t o  dip 10" t o  20". Detailed s t ructura l  mapping defined synclines t h a t  vary f rom 

elongate  t o  circular  (fig. 5). These synclinal depressions a r e  a s  much a s  1.5 km long and a r e  

composed of conical synclines and anticl ines t h a t  plunge gently a s  much a s  10" toward t h e  

c e n t e r  of t h e  depression (fig. 6). The amplitude of these  folds is normally less than 10 t o  15 m. 

Rim anticl ines may also occur along t h e  periphery of t h e  principal synclinal depressions, 

commonly separating t h e  depressions. Small-scale folds having amplitudes of less than 2 m also 

exist. Although possibly re la ted  t o  t h e  formation of t h e  larger synclinal depressions, some of 

t h e  smaller  folds probably formed by expansion associated with t h e  conversion of anhydrite t o  

gypsum (Fandrich, 1964). 

The sys temat ic  joints, veins, and principal synclinal depressions a r e  closely associated. 

Major t rends  of t h e  depression axes  a r e  005", 02%", 055", 080°, and 275", which a r e  similar t o  

those  of t h e  ver t ica l  veins and sys temat ic  joint s e t s  (fig, 7). These s t ructura l  e l ements  also 

exhibit  a weak northwest  (310") trend. Within a specific depression, t h e  most  significant t r end  

of t h e  ver t ica l  veins parallels t h e  axis of t h e  depression. Even though t h e  inclined veins s t r ike  

in many directions, t h e  dominant s t r ike  parallels t h e  or ienta t ion of t h e  depression (fig. 8). 

Strikes of t h e  smal!..-scale faul ts  exhibit a similar relation, although these  fau l t s  a r e  less  

common than t h e  o the r  structures.  

Model of Deformation 

Dissolution of sa l t  fo%bowed by collapse of s t r a t a  o r  gent le  subsidence influenced by 

gravity is thought t o  be  t h e  process t h a t  caused t h e  folds, faults ,  and veins observed in this 

area ,  Figure 9 depic ts  a simplified model of t h e  development of t h e  deformation s t ruc tu res  

(Goldstein, 1982). Stage  1 is  a normal burial process and is  recorded in nearly every 

sedimentary rock, S tage  2 results f rom horizontal extension and occurs  when dissolution Es 

initiated. This horizonta% extension could have produced t h e  normal faults. Rare r  reverse  and 

thrus t  f au l t s  indicate  local  horizontal compression. S tage  3 is  a d i f ferent  s t r e s s  regime 

character ized by vert ical  extension. As collapse proceeds, maximum extension changes f rom 
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nearly horizontal  t o  nearly vert ical .  Gent le  folding and nonsystematic f rac tur ing continue as 

support is  removed f rom below; veins a r e  mineralized with ver t ica l  extension fibers. 

Dissolution in t h e  Caprock Canyons S t a t e  Park a r e a  appears  t o  have occurred in a mosaic 

of localized a reas  displaying varying r a t e s  of enhanced dissolution. The similarity between t h e  

orientat ions of joints t h a t  p reda te  dissolution and t h e  synclinal depressions suggests t h a t  

Figure 6. Detailed map  of synclinal depressions located 1.3 krn north of Lake Theo, Caprock 
Canyons S t a t e  Park. Major axes  of the  t w o  depressions t rend northeast-southwest (84%" t o  
225'). 

10 



enhanced fluid flow and dissolution were, and presumably are ,  at l eas t  part ly controlled by 

predissolution joints. 

The  position of t h e  boundary between t h e  deformed zone and t h e  overlying undeformed 

zone is a function of bed thickness and vert ical  distance from dissolution (fig. 2) (Goldstein and 

Collins, 1984). Beds in t h e  zone  of deformed s t r a t a  a r e  a lmost  everywhere 0.1 m t o  1 m thick. 

Overlying undeformed beds a r e  rarely less than 2 rn thick and more  commonly a r e  as  much as 

10 rn thick. Thicker beds have a higher flexural rigidity and thus would no t  f lex t o  allow local  

development of extension parallel t o  t h e  layers. 
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Figure 7. Histograms of (A) sys temat ic  joints and (B) axes  of synclinal depressions at Caprock 
Canyons S t a t e  Park. The percent d a t a  per 10' intervals have been smoothed by a 10" running 
average every 2" of az imuth (Wise and McCrory, 1982). 



PALO DURB CANYON STATE PARK 

Palo Duro Canyon S t a t e  Park is located in t h e  northern p a r t  of Palo Duro Canyon, 

primarily in eas tern  Randall County. The canyon has about 200 m of relief. The  park is in t h e  

northern par t  of t h e  Palo Duro Basin near t h e  Amarillo Uplift (fig. 1). Stratigraphy in t h e  a r e a  

is similar t o  t h a t  exposed in Caprock Canyons S t a t e  Park. Isolated exposures of t h e  Permian 

Cloud Chief Gypsum a r e  overlain by sandstones and shales of t h e  Permian Quar termaster  

Formation. The  Triassic Dockurn Group is divided into two  formations in this area: t h e  basal 

Tecovas Formation, character ized by shales, mudstones, and fine-grained sandstones; and t h e  

Trujillo Formation, a thickly bedded sandstone unit. Ter t iary  Ogallala sediments and caliche 

a r e  also exposed in t h e  park, a s  a r e  Pliocene-Pleistocene lacustrine deposits  (Hood, 1977). 

Permian s t r a t a  at Palo  Duro Canyon S t a t e  Park have been deformed into gent le  folds and 

c u t  by small-scale faults ,  veins, and joints. Even though these  s t ructures  also exis t  at Caprock 

Canyons S t a t e  Park, t h e  geometry of t h e  s t ruc tu res  in t h e  Palo  Duro Canyon study a r e a  

indicates a di f ferent  deformational history. 

A 0 Vertical veins I3 N Inclined veins 

Contour interval 

a ~,~O/0-2.80/0 ~ 2 . 8 ° / ~ - 5 . i ' 0 / o  m > 5 . 7 0 / 0  

Figure 8. Orientations of veins in synclinal depressions (fig. 6 ) ,  Caprock Canyons S t a t e  Park. 
(A) Rose diagram of orientations of vert ical  veins. (B) Lower-hemisphere equal-area net  plots 
for poles t o  inclined veins. 
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Figure 9. Conceptual  model of b r i t t l e  deformat ion above dissolution zones. S tage  1 
represents normal burial; S tage  2 represents  horizontal extension a s  a precursor t o  dissolution 
collapse; S tage  3 represents  collapse (from Goldstein, 1982). 



Basement S t ruc tu re  and Joint  Trends 

Several  basement faul ts  s t r ike  northwest  and nor theas t  in Randall County (fig. 10) 

(R. T. Budnik, personal communication, 1983). Regionally, recurrent  f au l t  motion has 

influenced t h e  distribution of Paleozoic and Mesozoic sediments  (Budnik, 1983). In Randall 

County, basement faul ts  identified on seismic lines show reverse  displacements. F rac tu re  

orientat ions measured f rom a fracture-identif ication log of t h e  Gruy Federal  - R e x  White No. 1 

borehole show dominant northwest  and nor theas t  trends and a less significant eas ter ly  t rend 

(A. G. Goldstein, personal communication, 1982; fig. 10A). Joint  measurements  f rom Permian 

and Triassic rocks in P a l s  Duro Canyon S t a t e  Park  show a dominant trend t o  t h e  northwest  and 

weaker northeast  and west  trends (fig. 10B). The park a r e a  overlies a north-northwest-trending 

basement fault .  Surface  l ineaments also t rend northwest  and northeast  in this  a r e a  (Finley and 

Gustavson, 1981, p. 16). 

Orientat ions of gypsum-filled sys temat ic  joints in Permian rocks cropping ou t  along t h e  

northwest-trending Palo  Duro Canyon indicate  t h a t  t h e  joints have at l eas t  part ly controlled t h e  

location and pa t t e rn  of s t r eam incision and canyon erosion (fig. 11). The gypsum t h a t  fills t h e  

joints was derived f rom evaporite dissolution; thus, these  joints predate  slump f e a t u r e s  

associated with more  recent  unloading processes. The sa t in  spar gypsum needles in these  

vert ical  veins a r e  horizontal, which demonstra tes  t h a t  maximum principal extension was  

horizontal during mineralization. 

Veins and Faul ts  

The fibrous sa t in  spar veins cut t ing Permian s t r a t a  in Palo Duro Canyon S t a t e  Park a r e  

similar t o  t h e  veins in Caprock Canyons S t a t e  Park,  although in Pa lo  Duro Canyon t h e  veins a r e  

less abundant. Some vert ical  ce les t i t e  veins were  also observed (Hood, 1977). Small-scale 

faul ts  in Palo  Duro Canyon a r e  also less common than in Caprock Canyons S t a t e  Park. Normal 

faul ts  exhibit displacements of less than 0.3 m and dip a t  a n  average of 55' in all directions 

(fig. l2A). No preferred s t r ike  and dip directions were  observed for  t h e  normal faults .  Some of 

the  normal faul t  con tac t s  a r e  filled with gypsum veins. 

Reverse  faul ts  were  observed throughout t h e  study a rea ,  although they a r e  less  abundant 

than normal faults. Faul t  displacement is  mostly of two  magnitudes: displacements t h a t  a r e  

less than 0.2 rn and displacements f rom 1.0 m t o  2.5 m. Reverse  faul ts  mostly s t r ike  between 

340" and 350" and faul ts  with t h e  g rea tes t  displacement dip east-northeast  (fig. l2B). The 

average dip of t h e  reverse  faul ts  is 60"; dip of one thrus t  f au l t  is  15", Two other  faul ts  trending 

approximately 345" were  recognized in t h e  area;  although poor exposure prevented detai led 

measurement,  e s t ima ted  displacements a r e  2.5 m and 7 m. 
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Figure 10. Map and rose diagrams showing basement  faul ts  and joint and f r a c t u r e  orientat ions 
in eas tern  Randall County (basement s t ruc tu re  f rom R. IF. Budnik, personal communication, 
1983). (A) F rac tu re  orientat ions f rom fracture-identif ication log fo r  Gruy Federal  - Rex White 
No. 1 (A. 6.  Goldstein, personal communication, 1982). (B) Systemat ic  joints in Permian and 
Triassic rocks in Palo  Duro Canyon S t a t e  Park. 



Figure 11. Systemat ic  joint and vein orientations along t h e  Prai r ie  Dog Town Fork of t h e  Wed 
River, Palo Duro Canyon S t a t e  Park, 

1s 



Another type  of small-scale faulting, caused by expansion during t h e  hydration of 

anhydrite t o  gypsum, c u t s  thick gypsum beds. Fandrich (1966) repor ted  reverse  fau l t s  a t  a n  

outcrop near t h e  mouth of Sunday Creek t h a t  were  re la ted  t o  t h e  folding within thick gypsum 

beds. These faul ts  c u t  only t h e  gypsum s t r a t a  in which they occur and a r e  no t  associated with 

t h e  reverse  faul ts  discussed previously. Displacement on these  fau l t s  is  less  than 0.3 m. 

Folds 

Gent le  folds displayed by Permian s t r a t a  in t h e  a r e a  a r e  o f t en  a t t r ibu ted  t o  (I) expansion 

associated with t h e  hydration of anhydrite t o  gypsum or  (2) collapse of s t r a t a  caused by 

dissolution of evaporites (Matthews, 1969). Fandrich (1966) explained t h a t  expansion during t h e  

hydration of anhydrite c r e a t e d  a 0.4-km2 domal s t ruc tu re  near  t h e  mouth of Sunday Creek. 

Small-scale folds in a thick sect ion of interbedded gypsum and mudstone indicate  t h a t  this  

section expanded lateral ly and vertically. The small  folds plunge less than 10" in many 

directions. Folds caused by collapse of s t r a t a  during dissolution include synclinal depressions up 

t o  0.5 km in d iameter  and smaller  funnel-shaped depressions. 

A Normal faults B Reverse foul ts  
n = 32 n = 6 

N N 
I I 

A A 

I 
Contour interval 

r 6 %  
B) 0.2m displacement 

0-3O/o 3 - 6 %  A 1.0-2.5m displacement PA1397 

Figure 12. Lower-hemisphere, equal-area ne t  plots of faul ts  mapped at Palo  Duro Canyon S t a t e  
Park. (A) Poles t o  normal faults. (B) Poles t o  reverse  faults. 
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Dissolution-induced collapse and expansion caused by hydration of anhydrite have folded 

t h e  Permian s t ra ta .  Detailed s t ruc tu re  maps of t h e  a r e a  (figs. 13 and 14), however, exhibit a 

third folding s tyle  consisting of cylindrical folds having wavelengths of about 0.4 t o  0.5 km and 

amplitudes of 10 t o  15 m. Individual folds occur throughout t h e  a r e a  and have been t raced  for  

more  than 3 km. Three  domains a r e  indicated by di f ferent  trends of these  subparallel folds a t  

025'? 340°, and 305". I t  has not  been determined if one s e t  of folds ro ta tes  into another s e t  o r  if 

t h e  folds terminate  a s  they approach another domain. An angular unconformity between 

Permian and Triassic s t r a t a  commonly occurs a t  t h e  f lanks of t h e  anticlines (fig. 15). The 

unconformity indicates t h a t  t h e  cylindrical folds were  erosionally t runcated before Triassic 

deposition. This folding is probably related t o  tec tonic  movement. Superimposed on t h e  

cylindrical tec tonic  folds a r e  folds caused by dissolution-induced collapse. 

History of Deformation 

Permian s t r a t a  exposed in Palo  Duro Canyon S t a t e  Park display several  s ty les  of 

deformation. A north-northwest-striking basement faul t  was mapped beneath t h e  park a r e a  on 

t h e  basis of seismic and borehole data. The reverse offse t  displayed by t h e  faul t  is probably at 

a high angle. Systemat ic  joints in t h e  a r e a  may be  re la ted t o  t h e  basement structure.  

Westward across t h e  study area ,  sets of joints shi f t  in s t r ike  from northwest (305") t o  north- 

northwest (345") (fig. 11). Minor reverse fau l t s  occur throughout t h e  area ,  evidence of local  

east-northeast  and west-southwest compression (075" t o  255") (fig. 12b). In t h e  area ,  cylindrical 

folds a r e  probably secondary fea tu res  associated with a broader, more regional f lexure and also 

suggest east-northeast  and west-southwest compression (075" t o  255'). An angular unconformity 

a t  t h e  Permian-Triassic con tac t  indicates t h a t  t h e  folding had ended before Triassic deposition 

began. 

Deformation caused by evaporite dissolution and collapse of s t r a t a  was superimposed on 

preexisting structures.  This s ty le  of deformation produced veins, small-scale normal faults ,  and 

synclinal depressions. Collapse of t h e  Permian s t r a t a  may have been part ly controlled by t h e  

existing folds, Inclined veins for each  fold domain (fig. 16) s t r ike  in many directions, but 

preferred str ikes parallel fold axes. The s t r ikes  of sys temat ic  joints a r e  thought t o  be re la ted 

t o  t h e  regional s t ruc tu re  ra ther  than t o  t h e  secondary folds. Nonsystematic joints and inclined 

veins caused by dissolution and collapse may s t r ike  in any direction, although in each domain 

t h e  predominant s t r ike  of t h e  inclined veins parallels t h e  axial t rends  of folds (fig. 16). The 

preexisting cylindrical folds apparently influenced t h e  collapse of s t r a t a  and t h e  development of 

t h e  inclined veins. 
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CANADIAN RIVER VALLEY 

The Canadian River valley crosses t h e  centra l  pa r t  of t h e  Texas Panhandle above t h e  

Amarillo Uplift. The valley averages 180 m in depth and varies f rom 32 km t o  60 km in width. 

Permian and Triassic s t r a t a  a r e  well exposed along t h e  Canadian River and many of i t s  

tributaries. Here  Permian red beds of t h e  Whitehorse Group a r e  overlain by t h e  Alibates 

Dolomite, composed of dolomite beds in tercala ted with shale. The Alibates is about 4 t o  5 m 

thick and is t h e  strat igraphic equivalent of t h e  Cloud Chief Gypsum exposed in Palo  Duro 

Canyon S t a t e  Park. Interbedded sandstones, siltstones, and claystones of t h e  Permian 

Quar termaster  Formation overlie t h e  Alibates Dolomite. Triassic mudstones, siltstones, and 

sandstones of t h e  Tecovas Formation and interbedded sandstones and conglomerates in t h e  

Trujillo Formation unconformably overlie Permian rocks. Ter t iary  Ogallala sediments and 

caliche overlie t h e  Triassic deposits. 
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Figure 14, Structural  e lements  of southeastern p a r t  of Pa10 Duro Canyon State Park. 



The broad Bush Dome and t h e  John Ray Dome (fig. 17) a r e  associated with t h e  Amarillo 

Uplift (Rogatz, 1939). To  t h e  e a s t  a r e  Pan tex  Dome and 6666 Dome; Bravo Dome lies t o  t h e  

west. Early studies by Powers (1922) identify only a f e w  faul ts  t h a t  have small displacements 

associated with these  domes. H e  explained t h a t  these  domes formed by differential  compaction 

of s t r a t a  over basement  highs ra the r  than by recurrent  motion of fault-bound basement  blocks. 

Basement f au l t  motion, however, should not be  dismissed as a possible cause  of t h e  doming 

(McGookey and Budnik, 1983). Extensive drilling throughout t h e  region revealed more  fau l t s  in 

t h e  subsurface. An exposed fau l t  flanking t h e  Bravo Dome was recognized by P r a t t  (1923, 

p. 248), who measured a throw of about 25 m. Deformed s t ructures  resulting f rom evapor i te  

dissolution and collapse of s t r a t a  were  superimposed on t h e  preexisting tec tonic  structures.  

Dissolution produced synclinal depressions, sinkholes, collapse chimneys, and c las t ic  dikes. 

Five  locations within t h e  Canadian River valley (fig. 17) a r e  discussed in t h e  following 

section. The f i rs t  two locali t ies a r e  west  and eas t  of U.S. Highway 283 where  i t  crosses t h e  

Canadian River. This a r e a  borders Bush and John Ray Domes; regional tec tonic  folds a f f e c t  

Permian and Triassic rocks here. The  o the r  t h r e e  locali t ies within t h e  Lake Meredith National 

Recreat ion Area  and t h e  Alibates National Monument exhibit synclinal depressions, c las t ic  

plugs, and c las t ic  dikes. 

Figure 15, Angular unconformity between Upper Permian and Triassic s t r a t a ,  The exposure is 
approximately 0.1 km e a s t  of Capitol  Peak; t h e  view is  southward, Arrow points to Permian- 
Triassic contact .  



Domain I Domain II 
Fold trend Fold trend Fold trend 

Inclined veins 

~ l . 2 - 3 . 5 ° h @ 3 . 5 - 5 8 0 / ~ ~ > 5 5 8 0 / ~  ~ 1 . 5 - 4 . 4 ° / 0 ~ 4 4 - 7 . 4 0 / ~  1 1 7 4 %  H 1 . 5 - 4 . 1 %  m 4 . l - 5 . 5 %  1 > 5 . 5 0 / 0  

Vertical veins Vertical veins 
n -47  

-090 270- 

Figure 16. Structural  character is t ics  in di f ferent  domains within Palo  Duro Canyon S t a t e  Park. 
(A) Trends of folds. (B) Lower-hemisphere, equal-area net  plots for  inclined veins. (C) Rose 
diagram plots for  vert ical  veins. 



Regional Folds 

East  and west  of t h e  U.S. Highway 287 bridge over t h e  Canadian River, Permian and 

Triassic s t r a t a  dip gently away from John Ray and Bush Domes, respectively. About 5 km e a s t  

of t h e  highway, Permian and Triassic s t r a t a  dip southwestward f rom t h e  John Ray Dome 

(fig. 18): t h e  Permian Alibates Dolomite and t h e  Triassic Tecovas Formation dip 12" t o  15" and 

7" t o  10°, and s t r ike  a t  290" t o  310°, respectively. A t  this flank of t h e  dome, a zone of closely 

spaced joints in Triassic sandstones trends 3109 

About 1 km west of U.S. Highway 287, t h e  Permian Alibates Dolomite dips away from 

Bush Dome a t  7" t o  15O t o  t h e  northeast  (fig. 19). Triassic Tecovas s t r a t a  crop out  e a s t  of 
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Figure 17. Structural  se t t ing and location of study a reas  within t h e  Canadian River valley, 
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Figure 18. Cross section of Permian and Triassic s t r a t a  exposed along t h e  Canadian River, 
5 km east of U.S. Highway 287. The cross section is drawn,from a photograph. 
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Figure 19. Cross section of Permian and Triassic s t r a t a  exposed along t h e  Canadian River, 
about I km e a s t  of U S .  Highway 287. 



Pi tcher  Creek and dip t o  t h e  southwest  about 8" at t h e  western l imi ts  of t h e  outcrop; t o  t h e  

eas t ,  t h e  Tecovas beds a r e  horizontal. A faul t  may exist  between t h e  exposures of Permian and 

Triassic rocks a t  Pi tcher  Creek,  although the  folding of t h e  s t r a t a  can  also account  for  t h e  

strat igraphic differences on e i the r  s ide  of t h e  creek.  Joint  s e t s  in t h e  Permian rocks s t r ike  at 

310" t o  340" and 050" t o  070'. 

The a r e a  between t h e  Bush and John Ray Domes appears  t o  b e  a broad syncline 

character ized by smaller  scale  folds. Faul ts  were  not noted in t h e  a rea ,  although 1 km north of 

t h e  locali ty (fig. 18) a surface  fau l t  flanking John Ray Dome displaces Permian and Triassic 

rocks (Barnes, 1969). A few funnel-shaped depressions in the  a r e a  indicate  t h a t  dissolution- 

induced collapse processes have been active.  

Synclinal Depressions, C las t i c  Plugs, and Clas t i c  Dikes 

Chaot ic  folds re la ted  t o  evapor i te  dissolution-induced collapse a r e  common in t h e  

Canadian River valley. Within t h e  Blue Creek  picnic s i t e  a t  Lake Meredith National Recreat ion 

Area,  a synclinal depression having a major axis of about 0.7 km a f f e c t s  Permian s t r a t a  

(fig. 20). Bedding dips a s  much a s  30" in this  location, generally s teeper  than at Caprock 

Canyons and Palo  Duro Canyon S t a t e  Parks. Conical  folds plunge in to  t h e  depressions a t  about 

15". Nearby a t  t h e  Blue West a rea ,  c las t ic  plugs a r e  associated with a synclinal depression (figs. 

21 and 22); this  eionga-te depression is about 0.3 km long, and c las t ic  plugs of t w o  dist inct  

lithologies occur near t h e  cen te r  of t h e  depression. A t  t h e  c o n t a c t  between bedrock and piugs, 

Permian s t r a t a  typically dip toward t h e  c las t ic  plugs f rom 40" t o  nearly 90". A c las t i c  plug 

consisting of unconsolidated red clay and red, very f ine  t o  f ine  quar tz  sand is c u t  by two  plugs 

composed of unconsolidated white, f ine  t o  very coarse  quar tz  sand and gravel  consisting of 

granule- t o  pebble-sized c h e r t  and metamorphic  and sedimentary  rock f ragments ,  A t  t h e  

con tac t  between t h e  c las t ic  plugs, ca lc i t e  c e m e n t s  t h e  unconsolidated white quar tz  sand and 

gravel  of t h e  younger plugs, This calci te-cemented zone is more  resistant  t o  erosion than  a r e  

uncemented plug materials ,  and weathering has  caused t h e  cemented  sands t o  b e  expressed a s  

0.2- t o  0-5-m-wide dikes t h a t  dip toward and surround t h e  younger plugs f rom 75" t o  90". Small 

ver t ica l  f au l t s  t h a t  displace Permian beds less than 0.5 m have developed during slippage of 

preexisting joints. 

Evaporite dissolution and collapse of s t r a t a  genera ted t h e  synclinal depressions and c las t ic  

plugs. Collapse of overlying s t r a t a  may have occurred concurrently with dissolution. Caverns  

also may have formed (Gustavson and others,  1982). Natural  stoping in a cavern probably 

occurred when the  cavern room could not  support itself.  A series of roof fal ls  caused t h e  

collapse t o  propagate  upward. Sinkholes at t h e  surface  and c las t ic  plugs filled with collapse 
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Figure 20. Map of synclinal depression at t h e  Blue Creek area ,  Lake Meredith National 
Recreat ion Area. 
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breccia  were  formed by th is  process (Gustavson and others,  1982). The crosscutt ing exhibited 

by c las t ic  plugs at t h e  Blue West a r e a  is  evidence of d i f ferent  episodes of collapse. The a g e  of 

t h e  plugs is unknown, although recen t  sinkholes in t h e  Panhandle indicate  t h a t  collapse caused 

by dissolution is a n  ongoing process (Gustavson and others,  1982). 

Clas t ic  dikes appearing t o  be  f rac tu res  or  fissures t h a t  were  filled f rom above c u t  s t r a t a  

throughout t h e  Texas Panhandle (Collins, in press). A t  Alibates National Monument, numerous 

c las t ic  dikes a r e  adjacent  t o  a funnel-shaped depression (fig. 23); Permian s t r a t a  dip more  than 

35" toward t h e  cen te r  of t h e  depression. Composed of f ine sand and c lay  clasts ,  t h e  dikes a t  t h e  

edge of t h e  sinkhole range in width f rom 1 t o  20 c m  and generally dip away f rom t h e  depression 

a t  about 60" t o  70" (fig. 23). The  dikes thin, branch, and pinch o u t  downward f rom t h e  su r face  

(fig. 24), denoting t h a t  they were  filled f rom above, Subsidence caused by evapor i te  dissolution 

most  likely produced t h e  horizontal extension t h a t  opened t h e  f rac tures .  

CONCLUSIONS 

Exposed Permian s t r a t a  in t h e  Texas  Panhandle display a var ie ty  of deformational  styles. 

A t  Caprock Canyons S t a t e  Park in Briscoe County, a su i t e  of s t ruc tu ra l  fea tures ,  thought t o  

result  f rom dissolution of evapor i tes  and collapse of overlying s t r a ta ,  was observed. The 

s t ruc tu res  include closed synclinal depressions, faults ,  and thick gypsum veins with ver t ica l  
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Figure 23. Clas t ic  dikes adjacent  t o  a funnel-shaped collapse depression at Alibates National 
Monument. Cross section is  drawn from a photograph. 



Figure 24. Clas t ic  dikes t h a t  branch and pinch out  with depth. Dikes a r e  adjacent t o  a funnel- 
shaped depression at Alibates National Monument (fig. 23 study area). 

extension f ibers  and a r e  considered t o  have been strongly controlled by t h e  presence of pre- 

dissolution zones of joints and by locally enhanced sa l t  dissolution along these  zones. These 

fea tu res  suggest t h a t  ground-water movement and dissolution may be more pronounced along 

zones of sys temat ic  joints. 

Deformation s t ructures  exposed at Palo  Duro Canyon S t a t e  Park in Randall County a r e  

probably associated with regional tec tonic  folding and evaporite dissolution and collapse, 

Subparallel cylindrical folds and minor reverse faul ts  indicate east-northeast  and west- 

southwest (075" t o  255') compression and a r e  probably related t o  regional folding; t h e  a r e a  

overlies a northwest-southeast-trending basement fault .  An angular unconformity between 

Upper Permian and Triassic s t r a t a  along flanks of anticlines demonstra tes  t h a t  folding had 

ceased before Triassic deposition s tar ted.  Evaporite dissolution and collapse of overburden 

have also deformed Permian s t r a t a  in this a rea ,  resulting in closed synclinal depressions, faults ,  

and gypsum veins. 

Along t h e  Canadian River valley in Pot ter ,  Moore, Carson, and Hutchinson Counties, both 

tec tonic  s t ress  and sa l t  dissolution have been documented. Regional drape folds overlying 



basemen t  highs a f f e c t  Pe rmian  and Triassic  s t r a t a .  These  d r a p e  folds r e su l t ed  f r o m  recu r ren t  

motion on fault-bounded basemen t  upl i f t s  o r  f r o m  d i f f e ren t i a l  compac t ion  of s t r a t a  ove r  and  

ad jacen t  t o  t h e  uplifts,  A s u i t e  of co l lapse  s t r u c t u r e s  comprising synclinal  depressions, c l a s t i c  

plugs, and  c l a s t i c  dikes a l so  ex i s t s  in  t h i s  a rea .  
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