BULLETIN

OF THE

UNIVERSITY OF TEXAS

No. 365

SCIENTIFIC SERIES No. 29

OCTOBER 15, 1914

Bureau of Economic Geology and Technology WILLIAM B. PHILLIPS, Director

The Mineral Resources of Texas

BY

William B. Phillips

Published by the University six times a month and entered as second class matter at the postoffice at

AUSTIN, TEXAS

Publications of the Bureau of Economic Geology and Technology

The Mineral Resources of Texas. Wm, B. Phillips. Issued by the State Department of Agriculture as its Bulletin No. 14, July-August, 1910. (Out of print).

The Composition of Texas Coals and Lignites and the Use of Producer Gas in Texas. Wm. B. Phillips, S. H. Worrell and Drury McN. Phillips. University of Texas Bulletin No. 189. July, 1911. (Out of print).

A Reconnaissance Report on the Geology of the Oil and Gas Fields of Wichita and Clay Counties. J. A. Udden, assisted by Drury McN. Phillips. University of Texas Bulletin No. 246, September, 1912. A Map Showing the Location of Iron Ore Deposits in East Texas;

Blast Furnaces; Lignite Mines in Operation; Lignite Outcrops; Producing Oil Fields, etc. Wm. B. Phillips, September, 1912. of print).

Eighteen Press Letters, dealing with various features of mineral production in Texas. (Out of print).

The Fuels Used in Texas. Wm. B. Phillips and S. H. Worrell. Uni-

versity of Texas Bulletin No. 307, December 22, 1913.

The Deep Boring at Spur. J. A. Udden. University of Texas Bulletin No. 363, October 5, 1914. (Out of print).

The Mineral Resources of Texas, by counties, Bulletin 365, 1914.

Potash in the Texas Permian. J. A. Udden, No. 17, 1915.

Map of Thrall Oil Field, Williamson county, 1915.

Address all communications to:

WM. B. PHILLIPS, DIRECTOR. University Station, Austin, Texas.

INTRODUCTION.

The information contained in this Bulletin has been derived from many sources, chief among these are the following, viz.: The publications of the Texas Geological Survey, 1888-1892; the publications of the University Mineral Survey, 1901-1905; the Annual Reports of the Mineral Resources Division of the United States Geological Survey, 1882-1913; The Mineral Industry, 1892-1913; the Bulletins of the Bureau of Economic Geology and Technology, University of Texas, 1911-1914. In addition various reports on mining properties have been placed at our disposal. Wherever it has been possible to do so the statistics of the United States Geological Survey have been adopted

Latitude, longitude and magnetic declination have been taken from the reports of the United States Coast and Geodetic Survey. Elevations have been taken from Bulletins and topographic sheets of the United States Geological Survey and these have been supplemented by many contributions from reilroad companies, to whom our grateful acknowledgments are due.

Nearly all of the analyses and physical tests of stones and brick have been made in our own laboratory by S. H. Worrell, O. H. Palm, J. E. Stullken, Jas. P. Nash and E. L. Porch, Jr. The physical tests of clays are taken from the report of Dr. Heinrich Ries on Texas clays made for the University Mineral Survey in 1903-1904 and issued by the University of Texas in

Much valuable information has been obtained from the several volumes of the Texas Almanac and State Industrial Guide issued by the Dallas News. This is one of the best publications concerning Texas.

1908.

Statistics of population are from the U. S. census of 1910, unless otherwise stated. Property valuations and railroad mileage are for the year 1913.

The difficulty of preparing a publication on the mineral resources of the State which should be at once hopeful and conservative has been fully appreciated. In petroleum, especially, developments may come with considerable rapidity, as witness the Thrall field, Williamson county, which assumed commercial im-

portance within a few weeks in the spring of 1915. Where, as in this case, drilling can be done for \$1.00 to \$1.25 a foot, to a depth of 1000 feet, an oil field can be brought in rapidly. Where the formations are harder and the cost of drilling greater there is a corresponding delay.

Considering the State as a whole it is thought that this present publication covers the ground fairly well. As the work of the Bureau progresses it is hoped that fuller information may be acquired.

WM. B. PHILLIPS.

Austin, Texas, July, 1915.

TABLE OF CONTENTS.

Page.
CHAPTER I—Statistics of Mineral Production—Distribution of Items—Annual Statistics, 1882 to 1913. 1-51
CHAPTER II—Discussion of Counties: Anderson to Duval
CHAPTER III—Discussion of Counties, Continued. Eastland to Lee
CHAPTER IV—Discussion of Counties, Continued, Leon to Rusk,
CHAPTER V—Discussion of Counties, Continued, Sabine to Zavalla
CHAPTER VI—The Mining Law257-270
CHAPTER VII—Location, Elevation and Population of Cities, Towns and Villages
CHAPTER VIII—Location and Elevation of Mountain Ranges, Peaks and Hills

No.

29.

Plant of El Paso Smelting Works, El Paso.

Oil derrick, Spindle Top, near Beaumont, Jefferson county, 1901-2.

An oil gusher at Theall, Williamson county, Texas.

Oil gusher near Strawn, Palo Pinto county. A line of fuel oil cars, Sour Lake, Hardin county.

Natural gas, White Point, San Patricio county, opposite Corpus

Gas well, Little Giant Oil and Gas Co., Mexia field, Limestone county.

The Miller gas well, Petrolia, Clay county—Lone Star Gas Co.

9. Natural gas line at plant of Northwestern Brick Co., Wichita Falls, Wichita county.

10. Olmos Coal Co., Eagle Pass, Maverick county-Washer Plant.

11. American Lignite Briquette Co., Big Lump, Milam county. Tunnel in ten feet of lignite, 2000 feet.

12. Underground electric haulage, American Lignite Briquette Co., Big Lump, Milam county. Exposure of native sulphur, Culberson county.

13.

Sulphur forced out of ground, Freeport Sulphur Co., mouth of 14. Brazos river.

15. Plant of Elgin-Butler Brick & Tile Co., Butler, Bastrop county.

16. Red granite quarry, Granite Mountain, Burnet county.

17. Radiographs made with fergusonite, from Barringer Hill, Llano county.

Exposure of silver ore, Mina Grande cut, Shafter, Presidio county.

Limestone quarry and plant of Dittlinger Lime Co., near New Braunfels, Comal county.

20.

Limestone quarry, Tiffin, Eastland county. Limestone quarry, Risley Bros., Jacksboro, Jack county. Twenty-five feet of kaolin, near Leakey, Real county. 21.

22.

Quicksilver furnaces, Marfa and Mariposa Mining Co., Terlingua, 23. Brewster county.

24. Red sandstone quarry, near Barstow, Ward county.

25. A gray granite quarry, Llano county.

Loading salt, Salt Basin, El Paso county.

27.

Works of Texas Trap Rock Co., Knippa, Uvalde county. Interior view of salt works, B. W. Carrington & Co., Grand Saline, 28. Van Zandt county.

Mill for concentrating lead ore, Quitman Mountains, El Paso county.

30. Plant of Thurber Brick Co., Thurber, Erath county.

Outcrop of magnetic iron ore, Iron Mountain, Llano county. 31.

32. State Iron Furnace, Rusk, Cherokee county.

33. Iron ore dock, Port Bolivar, Galveston Bay.

Plant of Southwestern Portland Cement Co., El Paso, El Paso 34. county.

Plant of Texas Portland Cement Co., near Dallas, Dallas county. 35.

Plant of San Antonio Portland Cement Co., near San Antonio, 36. Bexar county.

37. Texas City refinery: Pierce-Fordyce Oil Association.

Port Arthur, Texas, oil refinery, of The Texas Company. 38.

Port Arthur refinery, Gulf Refining Company. 39

Beaumont refinery, Magnolia Petroleum Company.

CHAPTER I.

STATISTICS OF MINERAL PRODUCTION.

For present purposes we shall have to consider the expression "mineral resources" as of the same meaning as "mineral products," for mineral resources that have not been utilized do not appear in statistics of mineral production. Latent resources may or may not be of commercial importance. They may come into use within the near future, they may not be available until conditions of transportation and of markets undergo a change. Sometimes such changes come with unexpected rapidity, following radical alterations in demand; sometimes they are of slow development following upon the steady depletion of other sources of supply, or the creation of new demands of no great intensity at the beginning.

Mineral production is a fairly safe indication of mineral resources, for there are but few resources that have not already been developed, to some extent, at least.

During the year 1913, the mineral products of Texas were listed under 22 general items and some of these are separable into two or more. These 22 general items were as follows:

Asphalt. Cement. Clays and clay products. Copper. Gems and precious stones. Gold. Gypsum. Iron ore. Lead. Lignite. Lime. Mineral waters. Natural gas. Petroleum. Quicksilver. Salt. Sand and gravel. Silver. Stone. Sulphur. Zinc.

Asphalt may be divided into natural rock asphalt and asphalt derived from oil refineries.

Stone may be divided into granite, limestone, sandstone, traprock, etc.

The total value of the mineral products for the year 1913 was \$31,666,910, including an item of \$441,901 for miscellaneous products.

Ten years previously, i. e., in 1904, the total value was \$14,-353,270, while five years previously, i. e., in 1909, the total value was \$17,217,807. The following statement gives the total annual value since the years 1882-1886:

Year.	Value.
1882-1886\$	4,935,363
1887	1,006,534
1888	1,255,344
1889	1,760,473
1890	1,992,806
1891	2,525,259
1892	3,295,240
1893	2,655,437
1894	3,116,835
1895	2,856,537
1896	2,956,940
1897	3,330,798
1898	3,417,511
1899	4,573,631
1900	5,316,222
1901	6,647,926
1902	9,390,585
1903	12,766,865
1904	14,353,270
1905	13,752,346
1906	14,751,037
1907	19,806,458
1908	15,212,920
1909	17,217,807
1910	18,383,451
1911	18,817,304
1912	22,797,015
1913	31,666,910
Total\$2	68,161,519

In order to see just what items comprise this total the following statement has been prepared. In explanation of the last item, of \$28,629,659, covering the 32 years involved, it may be said that separate statistics are not available. "All others" includes everything not mentioned in the statement. Clay pro-

ducts include raw clay, brick, tile, pottery, etc. Lime means burned lime and is not included under limestone.

Itemized statement of the value of the mineral products of Texas, 1882-1913:

2020.	TT - 1 -
Asphalt:	Value.
Pool-	110 060
Rock	112,260
Coment	7,646,481
Cement	8,962,913
Clay products and raw clay	43,093,634
Coal	31,980,159
Copper	16,245
Gold	43,757
Granite	3,053,752
Gypsum	1,800,000
Iron ore	600,000
Lead	28,46 6
Lignite	8,258,58 3
Lime	2,532,369
Limestone	5,097,066
Mineral waters	2,831,933
Natural gas	5,099,578
Petroleum	97,429,885
Pig iron	3,000,000
Quicksilver	2,227,807
Salt	3,854,494
Sand and gravel	2,743,496
Sandstone	1,891,936
Silver	7,171,214
Zinc	55,832
Total	239 531 860
Miscellaneous products for 32 years	r=00,00±,000.
all others	8 28 629 659
Grand total	268,161,519

The following table gives the relative value of these items and the percentage of the total value:

		Per Cent
	Value.	of total.
Petroleum\$	97,429,885	40.6
Clay products (and raw clay)	43,093,634	17.9
Coal	31,980,159	13.3
Cement	8,962,913	3.7°
Lignite	8,258,583	3.4
Asphalt, manufactured	7,646,481	3.2
Silver	7,171,214	3.0
Natural gas	5,099,578	$\dots 2.1$
Limestone	5,097,066	$\dots 2.1$
Salt	3,854,494	1.6
Granite	3,053,752	\dots 1.3
Pig iron	3,000,000	1.3
Mineral waters	2,831,933	$\dots 1.2$
Sand and gravel	2,743,496	\dots 1.2

			Value.	Per Cent of total.
Lime	.		2,532,369	1.0
Quicksilver			2,227,807	
Sandstone			1,891,931	
Gypsum			1,800,000	
Iron ore			600,000	
Asphalt rock			112,260	
Zinc			55,832	
Gold			43,757	\dots 0.6
Lead			28,466	,
Copper			16,245)	
5 0 4-2			000 501 000	1000
iotal		\$2	(39,931,860	100.0

The total value of the petroleum produced is \$97,429,885, or 40.6 per cent of the total value. Considerable as this value is, yet it exceeds the value of the coal and lignite, clay products and stone, by a little more than \$3,000,000. If to the value of the coal and lignite, clay products and stone be added the value of the sand and gravel, the total value of these common articles almost equals the total value of the petroleum.

If these figures mean anything, they mean that the value of the common things, coal, lignite, clay products, sand and gravel, closely approximates the value of the petroleum, a material the production and treatment of which call for large investments. The stability of the industries based on these common things has also to be considered, for they are not subject to the same fluctuations of value or of interest charges as are often seen in the petroleum industry.

We speak now of crude petroleum, for there is no way of arriving at the value of the different articles made from crude oil. If this value could be included in the discussion we would also have to include the value of the articles made from coal, lignite, clays, sand and gravel. This would lead us too far afield for our present purpose, which is to point out that it is not always the materials requiring large investments that add most to the value of the mineral production.

Another very interesting deduction from this statement is that the total value of the production of metals and metallic ores in the State for 32 years is \$13,143,321. This is very little more than the combined value of the stone, sand and gravel. So far as can now be ascertained with a reasonable degree of ac-

curacy the annual value of the production of the metals and metallic ores in the State, 1882-1913, is as follows:

Year.	Value.
1882-1886	
1887	
1888	
1889	
1890	
1891	
1892	
1893	
1894	
1895	
1896	
1897	
1398	
1899	
1900 · · · · · · · · · · · · · · · · · ·	
1901	
1902	
1903	
1904	
1905	406,664
1906	430,160
1907	353,835
1908	363,388
1909	
1910	354,893
1911	326,325
1912	383,924
1913	445,411
	019 900 PFF
Missellancous and not fully stated	\$12,388,857
Miscellaneous and not fully stated	754,464
	\$13,143,321

No pig iron has been made in the State since the spring of 1909, and the iron ore industry is not of much present importance. This is an instance of the difference between mineral development and mineral resources. The iron resources of the State are of considerable importance, but the development is not. The resources of the State in the more valuable metallic ores, such as those of silver, lead, copper, zinc, etc., are thought to be much greater than the production would indicate, but, with the exception of silver and quicksilver, they have hardly been touched. Opinions as to the reason for this may and do differ widely. We do not discuss this here, but merely point out certain facts which are accentuated by the statistics of production for nearly a third of a century. A great deal has been

said and written concerning the mineral wealth of the State as represented by the more valuable metallic ores, particularly such as occur in what is known as trans-Pecos Texas, i. e., the extreme western part of the State, west of the Pecos river. It is unquestionably true that in some parts of this area, comprising about 31,000 square miles, there are the most encouraging indications of mineral wealth, as, for instance, in the Chinati Mountains, Presidio county; in the Quitman Mountains, El Paso county; in the Sierra Diablo, Culberson county; near Altuda, Brewster county, etc. But it is also true that these districts have not been developed and that the shipments made from them do not materially affect the total value of the mineral products credited to the State for many years.

Before stating the annual mineral production, it would be well to mention, as briefly as possible, the sources of the several items comprising the mineral production, and included in the total value of \$239.531,860.

Asphalt.

Practically all of this material is a product from oil refineries. Very little natural rock asphalt was produced. There are 11 oil refineries in the State with a combined daily capacity of 100,000 barrels of crude oil.

The annual production and value of asphalt-rock and manufactured asphalt, 1894 to 1913, is given in the following table:

Year.			
Rock:		Tons.	Value.
1894		3,000	\$ 45,000
1895		1,050	10,000
1896		5,000	25,000
1897		65	650
1898		80	1,000
1903		2,158	30,550
1904		3	60
A 5	•	11,356	\$112,260
Oil Refine	ries:		
1906	`,	24,900	306,750
1907		53,649	929,857
1908		17,167	350,440
1909		46,304	857,204
1910		57,713	1,040,825
1911		55,826	786,785
1912		94,530	1,404,266
1913		22,026	1,970,354
	4	172,115	\$7,646,481

Total rock		Value. \$ 112,260 \$7,646,481
	483,471	\$7,758,741

Cement.

Portland cement is made in four plants, two in Dallas county, one in Bexar county, and one in El Paso county.

The statistics of the total production of Portland cement are not complete, but during the five years ending with 1913, the production and value were as follows:

		Production.	
Year		Bbls.	Value.
1909		656,361	\$ 808,997
1910		.1,292,445	1,643,729
1911			1,785,000
1912			2,062,124
1913			2,663,063
7	Total	7,520,323	\$8,962,913

Clays and Clay
Products.

Many counties are represented, but
the chief ones are Bastrop, Bexar,
Bowie, Denton, Ellis, El Paso, Erath, Fort Bend, Gonzales,
Guadalupe, Harris, Henderson, Jefferson, Parker, Rains, Travis,
Wilson and Wise. Ellis county was the largest producer of
common brick, with 90,481,000. It is the chief clay-working
county in the State, as well as the largest producer of cotton.

Texas does not produce much pottery. Red earthenware, stoneware, yellow and Rockingham ware comprise the varieties. The total value of the pottery produced during the five years ending with 1913 was \$600,908, an average of \$120,181 a year. In 1913, Texas was ninth in the production of common brick and sixth in value; it was eighth in the production of front brick and ninth in value; it was eleventh in the value of sewer pipe. About 60 per cent of the value of all clay products is represented by common brick.

Annual value of clay products (including raw clay):

Ye	ar.																	Value.
18	82-	L 8	8	3 6	3												. \$	1,500,000
18	87																	400,000
18	88																	500,000
18	89																	600,000
18	90								٠.						•			700,000

Year.		Value.
1891		800,000
1892		
1893	· · · · · · · · · · · · · · · · · · ·	
1894		
1895		
1896		
1897		
4000		
		,
1000		
		_,,
1903		
1904		_, _ ,
1905		
1906		
1907	<i></i>	_,,
1908		
1909		3,148,463
1910		2,863,930
1911		2,669,399
1912		2,892,510
1913		
<i>y</i>		\$43,093,634

Coal.

The coal producing counties are Eastland, Erath, Maverick, Palo Pinto,

Webb, Wise and Young. Since 1895 the amount of coal produced has been 14,615,623 tons, valued at \$31,980,159. The original supply of coal is taken at 8,000,000,000 tons and the total workable area at 8,200 square miles, with an additional area of 5,300 square miles that may contain available seams. Erath county is the largest producer of coal.

The amount and value of the coal mined since 1895 is given in the following table:

		Prod	luction, tons	
Ye	ar.	of	2,000 lbs.	Value.
1895			360,616	\$ 801,230
1896			376,076	747,872
1897			422,727	792,838
1898			490,315	968,871
1899			687,411	1,188,177
 1900			715,461	1,350,607
1901			804.798	1,655,736
1902			696,005	1.326.155
1903			659,154	1.289.110
1904			774,315	1,652,992
1905			809,151	1,684,527
1906			839,985	1,779,890
1907			940,337	2,062,918

Value.
2,580,991
2,539,064
2,397,858
2,491,361
2,774.956
3,184,161
\$31,980,159

Copper.

Some shipments of good ore have been made from the Quitman Mountains, El Paso county, and the Sierra Diablo, Culberson county. The copper resources of trans-Pecos Texas are thought to be worthy of a much larger development than has ever been recorded.

Some shipments of ore carrying 18 per cent of copper have been made from the John Gilcrease claims, northwest side of the Quitman Mountains, El Paso county.

Many years ago, shipments of high grade copper and silver ore were made from the old Hazel mine north of Van Horn, Culberson county, and some development work has been carried on there within the last few years.

The copper ores occurring in the Permian formation in the counties of Foard, Knox, King, Stonewall, Haskell and Jones, contiguous to the Kansas City, Mexico & Orient Railroad, and to the Wichita Valley Railroad, and to the Wichita Falls & Southern Railroad, in Archer county, have not been developed.

These ores occur as rich "pockets" of chalcocite in clays, and also as pseudomorphs of malachite after wood. Many years ago some hopes were entertained of the probable working of these ores and a large amount of money was spent in the counties of Foard and Hardeman, but the enterprise was abandoned and nothing has been done since.

During the last two or three years, some prospecting for ores of copper, associated with the ores of lead and zinc, has been carried on in Burnet county, about 9 miles west of the town of Burnet. Chalcopyrite, galena and zinc-blende occur here in gneissoid granite, associated with calcspar and fluorspar. The district has not been opened sufficiently to allow one to express an opinion concerning it, but good samples of these ores have been submitted for examination.

In Llano county, especially in the Baby Head Mountains northeast of the town of Llano, some prospecting was done several years ago for copper ore, but nothing has been attempted of late.

The amount of copper credited to the State, since 1906, is 93,285 pounds, valued at \$16,245.

Fuller's Earth.

The statistics relating to the production of fuller's earth are not complete. In some years the returns are combined with those of other States, and in some years the returns are included under "miscellaneous." The amount credited to the State is about 2,000 tons, all told, valued at about \$16,000. There are excellent fuller's earths in Texas and some of the deposits are extensive. The chief deposits are in the counties of Burleson, Cherokee, Fayette, Gonzales, Shelby, Smith, Walker and Washington.

Tests of these earths have shown that some of them possess exceptional qualities for bleaching refined cotton seed oil and a few have good qualities for deodorizing mineral oils, fats, greases, etc. In this variety of clay we have a material that has peculiar Some fuller's earths are adapted for treatment of vegetable (edible) oils, some for mineral oils and some for animal fats and greases. The chemical composition appears to have no great influence on the bleaching powers, so that an analysis is of no special value, disconnected from actual trial under working conditions. The mechanical and physical qualities of these earths, the fineness to which they are ground, and, perhaps. more than anything else, the method of using them, determine their value. Complaints have been made that Texas fuller's earth has not had fair treatment, but one must bear in mind that the change from an earth whose working qualities are already known to one whose qualities are not known is often expensive. It requires that a refining company, already satisfied with the earth it is using, shall undertake tedious and costly experiments with other earths. It is not often that such a company is willing to do this. If we are to prove the superior qualities of our earths we must have the evidence that the refiners demand, not so much the evidence that satisfies us as the evidence that satis-Experimentation with fuller's earth is tedious and costly. It can be successfully undertaken only by investigators

who have had abundant and varied experience in this kind of work. It cannot be left to ordinary chemists, no matter how skillful they may be in the usual processes of laboratory work.

Gems and Precious Stones. This item is of small value. Pearls have been found in the Llano and Colorado rivers and in Caddo Lake, Marion county; topaz at Streeter, Mason county; fine amethysts in Llano and Brewster counties, and opal, with agates, etc., in Brewster county; clear and flawless quartz in Fayette county; turquois in El Paso and Culberson counties.

Gold. Workable gold ores are scarce in Texas. The maximum amount of gold reported in any one year was 387 ounces, in 1896. It occurs sparingly in certain silver-lead ores in trans-Pecos Texas; in association with quicksilver ores in Brewster county; in quartz veins in Blanco, Brewster, Burnet, Gillespie, Llano and Mason counties; in certain recent formations in the Gulf Coastal Plain, and in Cretaceous limestones in Tom Green and Williamson counties. It has also been found in black sands in Llano county and in the sands of the Colorado river, near Austin. So far as can now be ascertained, the total amount of gold credited to Texas since 1889 was valued at \$43.757.

It is hardly possible to give the value Granite. of the granite produced in the State up to this time, but it is thought that \$3,053.752 would be a fair estimate. This includes the value of the granite used in the construction of the Capitol, which came from Granite Mountain, Burnet county. The highest value recorded, \$348,317, was in the year 1904. Quarries are operated in the counties of Burnet. There are many beautiful varieties of Gillespie and Llano. granite in the State and the deposits are very large. The stone used in the Capitol is a coarse-grained red granite, but there are also many excellent quarries of light and dark gray, bluish gray and reddish gray. The so-called opal-granite of Llano county (llanite) is really a quartz porphyry. It is of a reddish brown color, and carries many inclusions of opaline quartz, which gives it a strikingly handsome appearance. It has not been utilized, although the belt of country in Llano county to which it belongs is of easy access. It is a very hard stone and takes a fine

polish. A fuller description of this granite is to be found under Llano county.

Crushed granite for concrete has met with favor, but the supply has not been steady. Generally, throughout the granite area, embraced in the counties of Blanco, Burnet, Gillespie, Llano and Mason, there are very extensive deposits of a natural granite gravel which makes a good road material. Several of these deposits are immediately along the line of the Austin & Northwestern Railroad (part of the Sunset-Central system), in Burnet and Llano counties.

The annual value of the granite produced in the State, 1882 to 1913, is as follows:

Year. Vale	ue.
1882-1888\$1,000	0.000
	2,550
	2,550
	5,000
1892 50	0,000
1893 38	8,991
	3,500
1898	4,685
1899 8	4,945
1900 70	6,069
1901 2'	7,005
1902 60	0,000
	3,325
1904 34	8,317
$1905 \dots 130$	2,193
	8,061
$1907 \dots 12$	2,158
	0,055
	3,271
	6,909
	0,488
	7,613
1913 7	6,067
\$3,05	3,752

Gypsum. Separate statistics of the production of gypsum are not now available for each of the years under consideration. The traceable amount since 1882 is about 800,000 tons, so that it is not likely that the total amount exceeds 900,000 tons, valued at about \$1,800,000. The gypsum (and gypsite) resources of the State are very large, not only in the counties where present operations are conducted

(Hardeman and Jones), but in many other counties west of the

Carboniferous formation and in El Paso, Culberson, Reeves, etc. In Stonewall, King, Knox, etc., there are beds of alabaster up to four feet in thickness, and these beds, although not so thick, are to be seen on the Colorado river northwest of Robert Lee, in Coke county. Gypsite, an earthy variety of gypsum, is the kind produced and used in Texas, at Acme, Hardeman county, and Hamlin, Jones county.

The iron ore resources of the State are of an excellent character. In east and northeast Texas the total iron ore area is thought to be approximately as follows, by counties:

	Square Miles.
Anderson	47
Cass	350
Cherokee	350
Gregg	22
Harrison	$\boldsymbol{245}$
Henderson	19
Marion	27
Morris	15
Smith	81
Upshur	10
Wood	${f 25}$
	
Total	1191

There are also undefined areas in Panola, Shelby, Rusk, etc., which may bring the total area up to 1,250-1,300 square miles. It is not to be understood that each square mile of this area is ore-bearing, in the commercial sense, for such is not the case. It is meant that over this area workable beds may be found. In east and northeast Texas this iron ore is limonite (hydrated sesquioxide of iron), and siderite (carbonate of iron), the latter variety, however, not constituting a large proportion of the total. The ore exists as "blankets" near the tops of hills and ridges, has generally less than six feet of over-burden (sands, clays and thin sandstones), and varies from two to five feet in thickness. Shipments of several thousand tons of roughly screened but not washed, or calcined ore, carried from 55 to 57 per cent of iron. Taking any one given "bank," however, and considering all of the material that would have to be moved by steam shovel, it is not likely that large and continuous operations would have a better material than ore carrying from 30 to 35 per cent in iron. This means that in such operations the earth, sand, clays, sandstone, chert, etc., would have to be removed in order to bring the content in iron up to an acceptable percentage, not less than 45 to 50. If this washed or otherwise improved ore should then be calcined, the percentage of iron would increase to 55 to 60 per cent, and the reducibility of the ore in the blast furnace would be greatly enhanced.

For the handling of these ores, coastwise shipments, the Gulf, Colorado & Santa Fe Railway has constructed an iron ore dock at Port Bolivar, Galveston Bay, of a capacity of 3,500 tons a day. It has also built a railroad from Longview, in Gregg county, into the northwestern part of Marion county, to reach the ore deposits there.

Other iron ore areas are in Llano and Mason counties, where excellent hematites and magnetites are found, but there are no commercial developments.

The statistics of iron ore production are not complete, but from the best information to hand, it is thought that the total production since 1882 may be taken as 600,000 tons, valued at \$600,000, practically all of it from northeast Texas.

The value of the pig iron made in Texas is not known with certainty, but has been estimated at \$3,000,000, 1882-1909. No pig iron has been made in the State since the spring of 1909, when the State furnace, at Rusk, Cherokee county, was closed down.

Lead. The State has been a very small producer of lead. The total amount credited since 1907 is 320 tons, valued at \$28,466. The lead has been derived from the concentration of ores at Shafter, Presidio county, and in the Quitman Mountains, in El Paso county, together with small shipments of ore from near Altuda, Brewster county; the Chinati Mountains, Presidio county, and prospects on the northwest side of the Quitman Mountains.

The silver-lead ore near Altuda and in the Quitman Mountains is certainly worthy of further development. The former locality is within one mile of the Southern Pacific Railroad and the latter within four miles of the Southern Pacific and the Texas & Pacific Railroads, and within eighty miles of the El Paso smelter.

There is also a promising lead prospect on the west side of the Chinati Mountains, Presidio county, about forty-five miles from rail. Small shipments of hand-picked ore from this place netted \$26.00 a ton at El Paso.

Excellent samples of high grade galena have come from the Solitario, Presidio county, but the locality is almost inaccessible except by pack-train and is about seventy-five miles from rail.

Some prospecting for galena has been carried on in Burnet county, on Silver Creek, twenty-five miles northwest of the town of Burnet, where the mineral occurs in sandstone.

Good samples of galena have also been obtained in the eastern part of Coleman county, but no prospecting has been done there.

The most encouraging outlook for lead ores, carrying a little silver (about an ounce for each per cent of lead) is in the Quitman Mountains, on the northeast and northwest sides (old Bonanza property, now owned and operated by the Southwestern Mines Company, Sierra Blanca; old McKinney property, etc.). On the northeast side of these mountains, where most of the work has been done, and where there is now a concentrating mill, the galena is associated with ores of zinc and copper. The zinc and copper have not yet appeared with the galena on the northwest side, but may do so in depth, especially when one considers that an excellent copper ore has been mined on the John Gilcrease claims almost immediately adjoining the lead properties.

Lignite. In the State there are about 60,000 square miles of lignite area, occupying, in a general way, that portion of the State lying east of a line drawn from the Rio Grande to Red river through Austin, Waco and Dallas. Of the total known area of lignite in the United States, about 127,000 square miles, nearly one-half is in Texas. The original supply of lignite in this State is taken at 30,000,000,000 tons and the production, so far as can now be ascertained, has been 9,186,455 tons, valued at \$8,258,583, to the close of the year 1913.

The lignite producing counties are: Bastrop, Fayette, Henderson, Hopkins, Houston, Lee, Leon, Medina, Milam, Robertson, Titus and Wood. The chief producing county is Wood,

seventy-five miles east of Dallas, where (at Hoyt and Alba) the normal production is from 1,000 to 1,500 tons a day.

Lignite is used, for the most part, as a fuel under stationary boilers, but about 20 per cent of the production goes for making gas in gas producers to be sent to gas engines. A small amount of "slack," through a ¼-inch screen, is used at hollow-tile works for imparting porosity to the tile, as also to add to the strength. The lignite is mixed with the clay in the machines and burns out in the kilns. It is said that it is much superior to sawdust for this purpose.

There has been a remarkable growth in the lignite industry in Texas during the last ten years. In 1904, the production was 421,629 tons, in 1908 it was 847,970 tons, and in 1913, 1,144,515 tons.

The amount and value of the lignite mined since 1895 is given in the following table:

	Production, tons	
Year.	of 2,000 lbs.	Value.
1895	124,343	\$ 111,908
1896	167,939	148,379
1897	216,614	179,485
1898	196,419	170,892
1899		146,718
1900	252,912	231,307
1901		251,288
1902		151,090
1903		216,273
1904		330,644
1905		284,031
1906		399,011
1907		715,893
1908		838,490
1909		602,881
1910		763,107
1911		781,927
$1912 \dots \dots$		880,788
1913	1,144,515	1,104,759
Total	9,186,455	\$8,258,583

No lignite briquettes are made in the State, although many of the lignites are well adapted for this purpose. Briquettes made from raw lignite are not to be recommended. A much better procedure is to drive off all of the water and a part of the volatile combustible matter and to use the residue, mixed with asphalt and some glutinous material as a binder, for the manufacture of domestic fuel. Made in this manner, the lignite briquettes are hard, dense, keep well on storing, burn with but little smoke, and have a heating value almost as great as the best domestic coals brought into the State. They can be made and sold profitably at prices varying from \$1.00 to \$2.50 a ton less than the cost of domestic coal in many cities and towns. From the volatile substances distilled from lignite, an excellent heating and illuminating gas can be made, as well as sulphate of ammonia, light oils, tar and pitch.

By converting the surplus gas, through gas engines, into electric current, a central power plant, making briquettes, could dispose of all of the products from the lignite—gas, tar, light oils, pitch and sulphate of ammonia. The by-products from a ton of lignite costing \$1.00 could be made to yield from \$3.00 to \$3.50.

It may be possible to manufacture gasoline from gas distilled from lignite, although there is no positive information on this subject. There are some lignites in the State which yield nearly 10,000 cubic feet of gas per ton of dry material. The composition of this gas is as follows:

	Per Cent.
Illuminants	1.8
Carbon monoxide	
Hydrogen	56.2
Methane	24.4
Nitrogen	7.8
	100.0

This gas carried 496 B. t. u. per cu. ft.

Considering the steadily increasing demand for gasoline and that it is now made in large quantities from certain kinds of natural gas associated with oil, it would appear that experiments in making this material from gas distilled from lignite should be undertaken at once. By controlling this distillation and removing the gas at regulated intervals, it would be possible to secure products of varying composition. The expense of such investigations has prevented us from undertaking them, but plans are now being made for co-operation between this Bureau and a regular gas plant for the treatment of 100,000 pounds of lignite on a working scale.

Considerable work in this direction has already been done by

the Bureau, on a small but complete scale, and the results were published in our Bulletin No. 307, entitled, "The Fuels Used in Texas," in the spring of 1914.

We propose now to treat 100,000 pounds of lignite in regular gas retorts, to recover the gas, tar and solid residue, and have enough of each product to prosecute investigations as to the uses to which it may be put. The redistillation and treatment of the tar will certainly yield valuable products, some of which are not now made in the United States. The solid residue from the retorts can certainly be made into high-class domestic briquettes, as has already been shown on a small scale. Sulphate of ammonia can certainly be recovered from the gas, but we do not know whether any other valuable products, such as gasoline, etc., can also be obtained.

There are many limestones in the State excellently adapted to the manufacture of white lime. The principal countics engaged in this industry are: Bexar, Comal, Coryell, El Paso, Travis and Williamson, although there are other localities where more or less lime is made. It is not possible to give the exact statistics of this business, but it is thought that the following statement is approximately correct as to the annual value of the lime produced since 1894.

The annual value of the lime produced in the State, 1894 to 1913, is given in the following table:

Year.	Value.
1894	 . \$ 13,308
1895	 . 30,700
1896	 60,000
1897	 . 21,862
1898	 . 38,531
1899	 . 79,399
1900	 . 79,659
190_{1}	 . 93,587
1902	 82,500
1903	 74,038
1904	 . 111,500
1905	 . 142,470
1906	 . 192,527
1907	 . 186,372
1908	 . 144,118
1909	 . 244,845
1910	 . 226,952
1011	 . 218,007

Year.																Value.	
-312																236,101	L
1913										÷					•	255,893	j.
. 7	ot	a.	ı			 	 								_	\$2,532,369	-)

Limestone. Practically every known variety of stone occurs in the State in very large quantities and in practically every county, with the exception of some of the counties in the Gulf Coastal Plain and in northeast Texas. Analyses and tests are given under each county wherever the information is to hand. During the last years there has been a notable increase in the value of the limestone produced, as in 1909 the value was \$241,528, and \$590,289 in 1913.

Investigations of many of our limestones with reference to their suitability for road-making are now under way in the road material laboratory of the Bureau of Economic Geology and Technology and the results will appear in a special publication. These investigations also include tests of such stones for use as railroad ballast. Many of these limestones have a crushing strength of more than 10,000 pounds per square inch, while not a few go as high as 15,000 to 18,000.

The use of limestone for building purposes, with the exception of the exterior of some structures made of reinforced concrete, is not large, although many of the deposits afford an excellent stone for such purposes. So far as it is now possible to ascertain the annual value of the limestone produced, 1891-1913, it is given in the following statement:

Year.	Year.
1891	\$ 175,000
1892	 180,000
1893	 28,100
1894	 41,526
1095	 62,526
1896	 77,252
1897	 57,258
1898	 70,321
1899	 100,025
1900	 124,728
-901	 209,658
1902	 228,662
1903	 262,053
1904	 387,061
1905	 171,847
1906	 239,125

Year.		Value.
1907		267,757
1008		314,571
1909		241,528
1910		447,239
191_{1}		490,289
$_{1}912$		530,251
1913		590,289
า	Total\$	5.097.066

Mineral Waters.

The principal localities in which mineral waters that are marketed occur

are as follows, by counties:

Bexar: Hot wells at San Antonio and San José. Lonestar Mineral Well, Texarkana. Bowie:

Daiby Spring, Dalby.

Callahan: Putnam Mineral Well, Putnam. Denton:

Brock's Mineral Well, near Denton. Eastland: Mangum Wells, Mangum.

Maurice Wells, Mangum. Erath: Southland Springs, Duffau. Falls:

Marlin Hotel Wells, Marlin. Galveston: High Island Mineral Well, High Island.

Grayson: Tioga Mineral Wells, Tioga.

Gregg:Capp's Well, Longview.

Harrison: Rosborough Spring, Marshall. Hill: Hubbard Hot Well, Hubbard. Hopkins: Sour Wells, Sulphur Springs. Crystal Spring, Terrell. Beauchamp's Well, Blossom. Kaufman:

Lamar: Carlsbad Well, Blossom. Hefner Spring, Blossom. Lampasas: Hanna Springs, Lampasas.

Lavaca: St. Mary's Mineral Well, near Hallettsville.

Nacoadoches: Aqua Vitae Well, Nacogdoches. Weatherby Spring, Garrison. Palo Pinto: Austin Well, Mineral Wells. Crazy Well, Mineral Wells.

Gibson Well, Mineral Wells. Indian Spring, Mineral Wells. Lamar Spring, Mineral Wells. Olympia Well, Mineral Wells. Orono Spring, Mineral Wells. Star Well, Mineral Wells.

Texas Carlsbad Spring, Mineral Wells.

Robertson: Overall Mineral Wells, Franklin.

Wootan Wells, Wootan Wells. Riviere Wells, Tyler. Smith:

Titus:

Roach Well, near Mt. Pleasant. Georgetown Mineral Wells, Georgetown. Williamson: Hume Sour Water Well, Sutherland Springs. Wilson:

In addition to these, there are hot springs in Brewster county, near Boquillas; in El Paso county; in Presidio county, east of Candelaria, and in Travis county, Austin and South Austin. There is a good sulphur spring at Marble Falls, Burnet county, but it is sometimes covered by the water of the Colorado river.

The production and value of the mineral waters in the State, 1889-1913, is as follows:

37	Gallons.	Value.
Year.	213,700	\$ 10,354
1889		16,040
1890	298,200	
1891	271,410	23,132
1892	405,400	24,535
1893	359,070	21,957
1894	1,857,950	162,220
1895	1,479,570	72,100
1896	4,005,912	172,138
1897	2,060,292	38,745
1898	842,100	25,120
1899	4,729,950	155,047
1900	5,438,700	209,991
1901	6,651,750	180,503
1902	6,568,550	362,446
1903	939,390	53,613
1904	1,142,500	64,923
1905	1,526,970	144,421
1906		122,085
1907		152,233
1908	1,586,634	151.032
1909	1,033,476	98.499
		128.549
	1,637,932	158,367
1911		151,395
1912		
1913	1,187,612	132,488
Total	48.962.902	\$2,831,933

Natural Gas.

The natural gas industry in Texas began to be of some importance in 1909, when the total value of the gas produced was \$127,008. Previous to that time the production and value were included in the returns from other States, such as Alabama, Louisiana, etc. At many oil wells natural gas has been used locally for some years.

The principal producing counties are Clay (where there were 33 wells at the close of 1913), Limestone, Shackelford and Webb. The great well at White Point, San Patricio county, across the bay from Corpus Christi, was brought in early in November, 1914, but soon became unmanageable and is now a wreck..

The gas from Clay county (Petrolia field) is piped to Alvord, Arlington, Bellevue, Bowie, Bridgeport, Dallas, Dalworth, Decatur, Denison, Denton, Eagle Ford, Fort Worth, Gainesville, Grand Prairie, Henrietta, Irving, Petrolia, Rhome, Sherman, Sunset, Whitesboro and Wichita Falls. The total pipe mileage is about 450. Most of the natural gas produced in the State is from Clay county, 120 miles northwest of Fort Worth. The gas from Limestone county (Mexia field) is piped to Mexia and Teague and arrangements are being made to pipe to Ennis and Waco.

The gas from Webb county (Aguilares, Reiser) is piped to Laredo, the county seat.

The gas from Brown county (Bangs field) is piped to Brownwood.

The Shackelford county gas (Moran field) is piped to Albany, Cisco and Moran.

Gas from Trickham, Coleman county, is piped to Santa Anna The Navarro county gas (Corsicana) is used locally, as also the gas from McMullen county (Crowther), and from the oil fields of the Gulf Coastal Plain.

Gas from the Caddo field, Louisiana, is used at Atlanta, Bloomburg, Cass, Leigh, Marshall, Queen City and Texarkana.

There are promising natural gas fields in Bexar county, from 20 to 30 miles south and southwest of San Antonio, but they have not been developed.

The gas wells on Holloway Mountain, northwest part of Brown county, are not being used commercially. Other notices of natural gas will be found under the separate counties, Gonzales, Houston, Maverick, Presidio, Trinity, etc.

The record of the natural gas industry in Texas, 1909-1913, is given in the following table:

Year.	Number		per of	Total value		Wells.	
	of			of gas	Dril	Pro-	
	producers.	Domestic.	Industrial	produced.	Gas.	Dry.	Dec. 31.
7000		# 00F	100	2 107 000			-
1909 1910	17 19	5,035 $14,719$	130 133	\$ 127,008 447,275	22	. 5	38 52
1911	29	22,972	303	1,014,945	19	14	69
1912 1913	41 · 50	27,226 37,350	329 393	1,405,077 2,073,823	24 43	23 29	87 123

The total value of the natural gas, 1909-1913, is \$5,068,128. During the three years ending with 1913, the total amount of natural gas produced in Texas was 25,183,521,000 cubic feet,

valued at \$4,493,845, or a little over 17 cents per thousand cubic feet.

The manufacture of gasoline from natural gas has progressed rapidly during the last three or four years, but none is made in Texas. During 1911, 1912 and 1913 the total quantity of gasoline made from natural gas in the United States was 43,567,835 gallons, valued at \$4,547,623, or a little of 10 cents a gallon. The gas used was more than 17,000,000,000 cubic feet. The chief producing State is West Virginia.

Some experiments, made by the Bessemer Gas Engine Company, Grove City, Pennsylvania, on natural gas from Electra, Wichita county, Texas, showed a yield of 3.5 gallons of gasoline per thousand cubic feet of gas. This result was higher than the average yield in West Virginia, which was 2.57 gallons in 1913.

The extraction of the gasoline from natural gas does not materially affect the quality of the gas for ordinary uses.

The manufacture of gasoline from gas distilled from lignite might open new avenues for the use of lignite. No practical work has been done in this direction, but plans are now being made by the Bureau of Economic Geology and Technology towards this end, as has already been stated under Lignite.

Gas distilled from lignite in regular gas retorts will be used for these investigations. In addition to the gas which can be thus obtained there will be other by-products, such as tar, ammoniacal liquor and solid residue, all of which can be made to yield valuable commercial products.

Petroleum. So far as can now be ascertained, the production of petroleum in Texas, from 1889 to the close of 1913, was 183,731,197 barrels, valued at \$97,429,885. To the close of the year 1900, the total production was 2,123,908 barrels, valued at \$1,699,462. Practically all of this production was from Corsicana, Navarro county, classed, for statistical purposes, in the North Texas fields. Up to 1896 there was practically no oil produced in Texas for commercial purposes, if we except the operations in Nacogdoches county, between 1887 and 1890, of which we have no definite records as regards production. From 1889 to and including 1895, the total output of the State, so far as is now known, was but 361

barrels, valued at \$1,999, all of which came from the Dullnig wells, near San Antonio. This was lubricating oil and the average price per barrel was a little over \$5.53. This price may be contrasted with the prices that maintained shortly after the opening of the Spindle Top field, near Beaumont, Jefferson county, 1901-1902, when oil was sold as low at 18 cents a barrel.

It was not until 1901 that the production in the State during any one year reached a million barrels. For statistical purposes the oil fields are divided into two classes, North Texas, including Corsicana and Powell, in Navarro county; Electra, Wichita county; Henrietta-Petrolia, Clay county, and the new field in Marion county, northeast Texas. The Coastal Texas (Gulf Coastal Plain) oil fields include Batson, Saratoga and Sour Lake, Hardin county; Spindle Top, Jefferson county; Humble and Goose Creek, Harris county; Dayton, Liberty county; Markham, Matagorda county.

The following statement gives the total production of these two great fields from 1902 to the close of 1913:

	Barrels.
Coastal Texas	153.873.162
North Texas	23,335,469
Total	177.208.631

During the last three years, however, the production in the North Texas field was 46 per cent of the entire production, and for the year 1913 it exceeded the production in the Coastal field by 3,259,026 barrels.

The following tables give the annual production and value of the petroleum, 1889-1913, and the production and value by districts from 1902 to the close of 1913.

The annual production and value of petroleum, 1889 to 1913, is as follows:

Year.	Bbls.	Value.
1889	4.8	340
1890	54	227
1891	54	227
1892	45	225
1893	50	210
1894	60	420
1895	50	350
1896	1,450	4.000
1897	65,975	65.975
1898	546,070	282,249
1899	669,013	473,443

Yea	ır.	Bbls.	Value.
1900		836,039	871,996
1901		4,393,658	1,247,351
1902		18,083,658	3,998,097
1903		17,955,572	7,517,479
1904		22,241,413	8,156,220
1905		28,136,189	7,552,262
1906		12,567,897	6,565,578
1907		12,322,696	10,410,865
1908		11,206,464	6,700,708
1909		9,534,467	6,793,050
1910		8,899,266	6,605,755
1911		9,526,474	6,554,552
1912		11,735,057	8,852,713
1913		15,009,478	14,675,593
		183,731,197.	\$97,429,885

The production in Orange county in 1913 was 17,706 barrels. The production in the Goose Creek field, Harris county, in 1913, was 249,641 barrels. Both of these are included in the total production.

In 1912 the Goose Creek field produced 43,898 barrels.

The total value includes \$19,123 for Orange county and \$206,311 for the Goose Creek field, Harris county, 1913.

In 1912 the value of the production from the Goose Creek field was \$27,791.

Production of Petroleum in Northern Texas, 1902-1913. Barrels of 42 Gallons. Statistics of the United States Geological Survey.

Year.	Corsicana, Navarro County.	Henrietta, (Petrolia) Clay County.	Powell, Navarro County.	Marion County.	Electra, Wichita County.	Total, including other districts.
1902	571,050 401,817 374,318 311,554 332,622 226,311 211,117 180,764 137,331 128,526 233,282 158,830	65,455 75,592 111,072 83,260 85,963 113,485 126,581 168,965 197,421	129,329 132,866 673,221 596,897 421,659 383,137 450,188	251,717 677,689 362,870	899,579 4,227,104	5,275,529
Total	3,267,422	1,312,612	3,841,023	1,554,678	13,258,307	23,335,46

The high-water mark of production was reached in 1905, when the amount was 28,136,189 barrels, but the high-water mark of

Value of petroleum in Northern Texas, 1902-1913. Barrels of 42 gallons.

, '	Corsi	cana.	Powell. Value.		Henrietta (Petrolia).		Electra.		Marion	Total value	
Year.	Val	lue.			Val	ue.	Val	ue.	Val	of all districts.	
	Total.	Per bbl., cents.	Total.	Per bbl., cents.	Total.	Per bbl., cents.	Total.	Per bbl., cents.	Total.	Per bbl., cents.	districts.
1902 1903 1904 1905 1905 1906 1907 1908 1909 1910 1911 1912	410,536 458,071 315,656 258,590 310,941 228,845 153,489 130,335 87,623 74,439 149,396 156,844	114. 87. 83. 93.5 101.1 72.7 72.1 63.8 57.9 64.	9,863 57,291 55,611 66,433 356,144 407,186 274,536 199,952 242,440 186,528 193,489 216,403	52.9 68.2 65.1 52.2 53.8 50. 76.9		47.5 47.5 65. 94.8				80.2	\$ 420,39 515,31 412,36 361,60 740,54 721,57 479,07 393,73 505,39 1,213,96 4,112,82 9,125,18
l'otal and average	2,734,762	81.6	2,265,825	55.6	996,741	57.9	11,975,800	75.	552,989	80.	\$ 19,001,9

Production of petroleum in Coastal Texas, 1902-1913. Barrels of 42 gallons. Statistics of the United States Geological Survey.

Year.	Batson, Hardin County.	Saratoga, Hardin County.	Sour Lake, Hardin County.	Matagorda County.	Spindle Top, Jefferson County.	Dayton, Liberty County.	Humble, Harris County.	Other districts.	Total, including other districts.
02		44	838		17.420.949				17,465,78
03	4,518	8,848			8,600,905			a.30	17,453,61
04	10,904,737	739,239	6,442,357		3,433,842			a.50	21,672,16
05	3,774,841	3,125,028	3,362,153		1,652,780	60.294	15.594.310	a.30	27,615,90
06	2,289,507	2,182,057	2,156,010		1,077,492	92,850	3.571.445	77,031	11,449,99
07	2,164,453	2,130,928			1,699,943	108,038	2,929,640	21,563	11,410,07
08	1,593,570	1,634,786			1,747,537	39,901	3,778,521	31,185	10,483,20
09	1,206,214	1,183,559	1,703,798		1,388,107	17,647	3,237,060	87,039	8,852,52
10	1,113,767	1,024,348	1,518,722	455,999	1,182,436	9,582	2,495,511	129,497	7,929,86
11	1,023,493	925,777	1,364,880		965,939	4,344	2,426,220	2,800	7,275,28
12	844,563	1,116,655	1,175,108	613,292	822,916	12,151	1,829,923	44,920	6,459,52
13	741,350	937,720	1,348,053	294,553	716,374	13,329	1,504,880	1,620	5,825,2
Total	25,661,013	15,000,097	23,020,082	2,219,995	40,709,220	328,136	37,370,510	395,765	153,873,16

a Bexar county. Note.—The production of Saratoga and Sour Lake for 1902 and 1903 is included in the grand total.

The Spindle Top (Beaumont) field came into production in January, 1901. During that year the yield was 5,185,883 barrels, valued at \$949,307, or 18.3 cents per barrel.

Value of petroleum in Coastal Texas, 1902-1913. Barrels of 42 gallons. Statistics of the United States Geological Survey.

	Bats	on.	Saratoga.		Sour Lake.		Matagorda County.		Spindle Top.		Dayton.		Humble.		Total,
_	Valu	te.	Valu	ie.	Valu	ie.	Valu	e	Valu	ie.	Valu	ie.	Valu	ie.	other districts,
Year.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	Total, dollars.	Per bbl., cents.	dollars.
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913	1,125 3,707,671 1,025,025 1,199,625 1,913,875 885,965 851,138 851,927 704,788 625,812 670,323	25. 34. 27.2 52.4 88.4 55.6 70.6 76.5 68.8 74.1 90.4	8,967 c2,212,089 244,660 872,285 985,543 1,742,913 989,167 864,938 789,761 739,247 827,847 855,935	20. 25. 33. 28.1 45. 81.8 60.5 73.8 77.1 79.8 74.1	14,413 c 2,401,911 1,117,261 1,115,475 1,944,343 982,769 1,227,734 1,203,920 995,807 874,897 1,350,379	32.15 c 37.3 33.2 53.6 82.6 61.6 72.1 79.3 72.9 74.5	51,625 16,677 a41,556 a10,811 b33,267 21,918 250,050 305,588 406,032 266,338	34. 36. 51.6 81.5 42.9 75.3 54.8 66.2 70.4	3,563,285 2,212,089 1,337,655 612,282, 666,287 1,521,304 1,030,403 1,041,791 961,758 724,978 654,778 716,993	20.45 25. 38.9 37. 61.8 89.5 58.9 75.1 81.3 75. 79.6	18,255 40,265 80,559 19,818 11,471 6,815 2,946 8,473 10,633	30.3 43.4 74.6 49.7 65.0 71.1 67.8 69.7 79.8	3,528,768 1,736,165 2,456,892 2,269,341 2,314,082 1,927,879 1,864,598 1,313,229 1,453,158	22.6 48.6 83.9 60. 71.5 77.3 76.8 71.8 96.5	3,586,665 7,002,165 7,743,800 7,190,658 5,825,086 9,680,286 6,221,636 6,399,318 6,100,355 5,340,502 4,739,887 5,550,408
	12,437,276	60.3	11,133,302		13,268,909	63.6	1,403,862		15,043,553		199,235		18,864,112		75,380,870

a—Includes Hoskins Mound. b—Includes Goose Creek. c—Values of Saratoga and Sour Lake combined, estimated at 25 cents a barrel. The Spindle Top (Beaumont) field came into production in January, 1901. During that year the yield was 3,593,113 barrels, valued at \$630,752, or 17.5 cents per bbl.

value was in 1907, when the total value was \$10,410,865. The 12,322,696 barrels produced in 1907 were worth \$2,858,603 more than the 28,136,189 barrels produced in 1905.

Prior to the year 1900 practically all of the petroleum produced in Texas came from the Corsicana field. Since 1898 that field has maintained its reputation for supplying high grade oil, the average price, per barrel, being 81.6 cents during the 12 years ending with 1913. The total production of the Corsicana field may be taken at 5,448,820 barrels, valued at \$4,856,844. The Powell field, also in Navarro county, yields a heavier oil than the Corsicana field. It came into production in 1902 and has yielded 3,841,023 barrels, valued at \$2,265,825, or 55.6 cents a barrel. The Henrietta field, Clay county, came into production in 1904, and has yielded 1,312,612 barrels, valued at \$996,741, or 57.9 cents a barrel.

The Electra field, Wichita county, came into production in 1911, and has produced 13,258,307 barrels, valued at \$11,975,800, or 75 cents a barrel. This is also a high-grade oil.

The other oil field classed as belonging to Northern Texas is in Marion county, in northeast Texas. It is the Caddo Lake district in Texas, and may be the west extension of the Caddo fields in Louisiana. It came into production in 1910, and has yielded 1,554,678 barrels, valued at \$552,939, or 90 cents a barrel.

The entire production of all of the Northern Texas fields may be taken at 25,415,450 barrels, valued at \$20,648,149.

In Coastal Texas the first of the great fields to come into production was that at Spindle Tom (Beaumont), Jefferson county. It began to produce in January, 1901, and since that time has yielded 45,895,103 barrels, valued at \$16,002,860, or an average of 35 cents a barrel.

Saratoga and Sour Lake, Hardin county, came into production in 1902. The statistics for these two fields are combined for the years 1902 and 1903, but since 1904 Saratoga has yielded 15,000,097 barrels, valued at \$11,133,302, or 62.7 cents a barrel. Since 1904, Sour Lake has yielded 23,020,082 barrels, valued at \$13,268,909, or 63.6 cents per barrel.

The Batson field, Hardin county, came into production in 1903, but it was not until 1904 that the yield was considerable.

Since 1903, it has produced 25,661,013 barrels, valued at \$12,-437,274, or 60.3 cents per barrel.

Matagorda county (Markham, etc.) came into production in 1904 and has yielded 2,219,995 barrels, valued at \$1,403,862, or 56.7 cents per barrel.

Dayton, Liberty county, came into production in 1905, and since that time has yielded 328,136 barrels, valued at \$199,235, or 61.3 cents a barrel.

The Humble field, Harris county, came into production in 1905 and has yielded 37,370,510 barrels, valued at \$18,864,112, or 67.5 cents per barrel. During its first year, this field produced 15,594,310 barrels, but fell to 3,571,445 barrels the following year, and in 1913 produced 1,504,880 barrels.

The pipe line mileage in the State is probably close to 2,000 miles at this time. The natural gas pipe line mileage, all told, is about 600 miles.

There are 11 oil refineries in the State, with a combined daily capacity of about 100,000 barrels.

Our excuse for mentioning potash Potash Salts. salts as among the mineral resources of the State is that certain statements, in no manner authorized by us, have found their way into the public prints to the effect that such deposits had been found here in commercial quantities. These statements are erroneous. They probably arose from publications issued by this Bureau that in water taken from the depth of about 2,200 feet in a deep boring at Spur, Dickens county, some 200 miles west of Fort Worth, we did find potassium chloride to the amount of 324 grains per United States gallon. The water above and below this depth did not contain so much. This amount of potash, while higher than in any other water reported from the United States, is far from commercial possibilities. It merely indicates that somewhere about this depth in this particular well there was an unusual amount of potash. Quite recently we have examined certain cuttings from a well in Potter county, 23 miles northwest of Amarillo. At a depth of 875 to 925 feet we found that the soluble portion was 87 per cent, and of this there was 9.23 per cent of potash (K₂O), equivalent to 14.81 per cent of potassium chloride. This is distinctly encouraging. So far as known, this material contained a much larger amount of potash than any deep borings have shown in any part of the United States.

A well in Randall county, 16 miles southwest of Amarillo, has also yielded borings from a depth of 1,700 to 2,100 feet which contained 25 per cent of soluble matter, which held 2.79 per cent of potash, equivalent to 4.38 per cent of potassium chloride.

Dr. J. A. Udden, geologist for the Bureau of Economic Geology and Technology, discussed the question of the existence of potash salts in Texas in the American Fertilizer, Philadelphia, December, 1912, and much more in detail in Bulletin No. 307, of the Bureau, entitled "The Deep Boring at Spur," issued during the summer of 1914.

In a paper presented before the American Institute of Mining Engineers at its New York meeting, February 15-17, 1915, entitled "Possible Sources of Potash in Texas," the writer reviewed the entire subject and gave, also, an account of the discovery of nitrate of soda in Presidio county and nitrate of potash in Brewster county. None of the localities examined appears to present commercial possibilities. In Presidio county, near Candelaria, there are a few thin seams of nitrate of soda held in rhyolite (an igneous rock). East of Maverick Mountain, and between this and the Chisos Mountains, southern part of Brewster county, there are thin seams of nitrate of potash in a Cretaceous sandstone, and this substance is also found in El Paso county, in small caves inhabited by bats and rats, and in Presidio county at a locality about 55 miles south of Marfa. On the Devil's river, Val Verde county, nitrate of soda and potash has been found in the debris of an old Indian camp. This material is also reported from near Burnet, Burnet county. But, so far as known, not one of these localities can be expected to yield either nitrate of potash or nitrate of soda in commercial amounts. Whether deep borings in any part of the State will reveal sources of potash salts that may be utilized remains to be seen. There are indications of the existence of beds of potash salts in Potter county, both northwest and southwest of Amarillo, but it will require much exploitation and the expenditure of considerable capital before definite information can be acquired. The importance of the subject is certainly very great, for we do not

produce any potash salts of much consequence in the United States. Practically all that we use is imported from Germany, the value of such imports during the year 1913 having been \$10,793,913. During the five years ending with 1913, the value of the potash salts brought into the United States was \$49,361,115.

We are aware of the risk one takes in venturing to predict this, that or the other. At the same time, it appears to us that there are localities in Texas where deep borings for potash salts might be undertaken with fair prospects of success. These localities are contained within the area from Potter county on the north to the Texas & Pacific Railway on the south, and include the counties lying along the Texas-New Mexico border and immediately east. Deep boring in this region would be expensive. It is not likely that the cost would be less than \$10 a foot, and it might be more. The more favorable localities would appear to be in Potter and Randall counties and near the salt basins in the counties of Lamb, Bailey, Hockley, Cochran, Yoakum, Terry, Gaines, Andrews, Loving, Winkler, Ector, Ward and Crane.

Quicksilver. The production of quicksilver is given at 52,178 flasks, valued at \$2,-227,807, since the year 1900, when the industry began. This figure is probably lower than the actual production, and we are inclined to take the total amount at 55,000 flasks, valued at \$2,310,000. All of this has come from the Terlingua district, southern part of Brewster county, from 80 to 90 miles south of the Southern Pacific Railway.

The real possibilities of this district have hardly been touched. For the last several years the average content of quicksilver in the ores treated has been much above the average in the California ores. For the last 15 years Texas has ranked second in the production of quicksilver, with California considerably in the lead. But for lack of transportation facilities, the Terlingua district could easily show a much greater development than has been recorded. The following statement gives the annual production, in flasks of 75 pounds, net, and the value from 1900 to the close of 1913:

	Flasks of 75	
Year.	lbs. net.	Value.
1899	1,000	\$ 42,000
1900		75,600
1901	$\dots \dots 2,932$	132,438
1902	$\dots 5,319$	239,350
1903	F 2.2.0	211,218
1904		232,116
1905	4,723	172,362
1906	4,761	178,829
1907		148,387
1908		122,260
1909	4,188	194,084
1910		154,413
1911 (Est.)	2,000	84,000
1912 (Est.)	2,700	114,750
1913 (Est.)	3,000	126,000
Total	$\dots \overline{52,178}$	\$2,227,807

Salt. So far as actual statistics are concerned the production of salt, since

1892, is taken at 6,646,422 barrels, valued at \$3,854,494. For three of these years the returns were estimated. This amount is probably less than the real production, as no account was kept of the salt hauled in wagons from old salt lakes, etc., in the counties of Crane, El Paso, etc. It is impossible to estimate the amount of this salt, but it would hardly be more than 500,000 barrels for the period of 1892-1913. The statistics given are from the counties of Anderson, Mitchell and Van Zandt.

Heavy beds of salt are known to exist at Spur, Dickens county; in the vicinity of Amarillo, Potter county, etc., as revealed by deep borings. The old salines in Smith county (Steen, Lindale and Brooks) have not been in operation for many years. (See under Smith county.)

The salt produced in Texas is from the evaporation of brines pumped from depths varying from 300 to 600 feet.

The following statement gives the annual production and value of salt from 1892 to the close of 1913:

Yea	ır	Barrels.	Value.
1892		121,250	\$ 99,500
1893		126,000	110,267
1894		142,857	111,000
1895		125,000	55,000
1896	(Est.)		75,000
1897	(Est.)		122,750
1898			119,700
1899		312,436	204,330
1900	(Est.)	320,000	210,000

Year.	Barrels,	Value.
1901 (Est.)	330.000	140,000
1902	347,906	143,683
1903	314,000	117,647
1904	376,695	149,246
1905	444,832	142,993
1906	360,733	170,559
1907	356,086	226,540
1908	442,571	255,652
1909	400,315	260,286
1910	382,164	272,568
1911	385,200	299,537
1912	373,064	290,228
1913	355,529	278,008
Total	3,646,422	\$3,854,494

Sand and Gravel. Since 1905 to and including 1913, the amount of sand and gravel credited to the State is 5,300,697 tons of 2,000 pounds, valued at \$2,743,496. The actual amount produced is certainly far greater than this, but we have no means of knowing how much greater it has been. It may well be twice as great. There are thousands of wagon loads of sand and gravel of which there is no record at all, nor can there be. Organized producers, who keep an account of their business, are able to report their output, but in the aggregate, unlisted and sporadic producers must handle a large tonnage.

By far the greater part of the sand is used in making concrete, mortar, etc., only a small proportion going to glass works. An unknown and unknowable part goes to the making of sand-clay roads.

A considerable part of the gravel goes for making concrete, for railroad ballast, etc., especially the washed gravel, whether of natural origin or prepared in a washery. Of recent years a very large proportion of the gravel produced, whether listed or not, has been used in the construction of roads.

With the general interest shown in the building of better roads it is likely that we shall see a large development of the gravel industry in many parts of the State. Macadam roads, built, in great part, of stone, are costly, although they are permanent, when given proper attention. Concrete roads require a great deal of gravel, but their cost is also high. For ordinary purposes, the best and cheapest roads in Texas will be built mainly of gravel, with a sub-course of rock when necessary.

In order to meet the increasing demand for information concerning the quality of road making materials in this State, the Bureau of Economic Geology and Technology has equipped a complete laboratory for making all kinds of tests. No charge is made for this work. It is necessary only to send from 30 to 40 pounds of gravel, or sand, or stone, and to ask that the investigations be made.

The following statement gives the annual production and value of sand and gravel, 1905-1913. The greater part of the value is on account of the gravel, as out of a total value of \$840,850 for 1912 and 1913, the value of the gravel was \$473,692, or more than 56 per cent.

The annual production and value of sand and gravel in the State, 1905-1913, is as follows:

		Tons of	
Year.		2,000 lbs.	Value.
1905		75,000	146,462
1906		314,110	159,367
1907		283,484	149,294
1908		309,250	140,067
1909		676,506	246,365
1910	1	,006,584	517,225
1911		1,048,352	543,866
1912		716,468	384,942
1913		870,943	455,908
,	rotal	5,300,697	\$2,743,496

Sandstone. Considering its resources in many varieties of sandstone, this State has not a large output to its credit. During the twenty-four years ending with 1913 the total value of the sandstone produced was \$1,891,936, or about \$79,000 a year. In only eight years of this period did the value reach \$100,000.

Excellent sandstones occur in many counties, especially in Bexar, Burnet, Fayette, Lampasas, Lavaca, Tyler, Ward, etc. Most of the stone is of a clear gray color, but in Ward county, near Barstow, there is a good quarry of a reddish-brown stone that has been used to a considerable extent. One of the latest buildings to employ this stone is the addition to the Bexar county courthouse, San Antonio.

One of the best gray sandstones in the State occurs on both sides of the Colorado river at Chaddick's Mill, Lampasas county. This locality has afforded stone for local use, but now that the San Saba Branch of the Gulf, Colorado & Santa Fe Railway crosses the river immediately contiguous to some of the most favorable deposits, it would appear that this stone could come into more extensive use. The proportion of native stone used for buildings is not large, rip-rap and concrete accounting for the greater part. The following statement gives the production and value of the sandstone, 1889-1913:

The annual value of the sandstone produced in the State from 1889 to 1913, is as follows:

Year. Value. 1889 \$ 14,651 1891 6,000 1892 48,000 1893 77,675 1894 62,350 1895 97,336 1896 36,000 1897 30,000 1898 77,190 1899 35,738 1900 37,038 1901 111,568 1902 165,565 1903 114,381 1904 209,313 1905 123,281 1906 111,533 1907 108,047 1908 154,948 1909 61,600 1910 40,471 1911 28,000 1912 82,501 1913 58,750		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yea	r.	Value.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1889		14,651
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1891		6,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1892		48,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1893		77,675
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1894		62,350
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1895		97.336
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1896		36,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1898		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1899		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1900		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1901		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1902		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1903		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1904		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1905		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1906		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	1908		
1910 40,471 1911 28,000 1912 82,501 1913 58,750	1909		
1911 28,000 1912 82,501 1913 58,750			
1912	1911		
1913 58,750	1912		
	1913		
Total\$1,891,936			
	T	otal\$1	1,891,936

With the exception of a little silver associated with lead ores in the Quitman mountains, El Paso county, and the Altuda district, Brewster county, the entire production of the State is credited to the Shafter district, Presidio county, 47 miles south and west from Marfa. The total amount appears to be 1,313,632 Troy ounces, valued at \$7,171,214. For more than thirty years there has been an uninterrupted production at Shafter, where the ore is a silver chloride with more or less silver-bearing galena. Pan amalgamation was used until recently, when a cyanide plant was built. The underground works are extensive and now comprise more

than forty miles of shafts, tunnels, levels, upraises, winzes and chambers. The deepest shaft is about 700 feet. The ore occurs in great chambers in a Carboniferous limestone, with but few surface indications. The silver-lead ore near Altuda, Brewster county, is held in a limestone of the same age as the Shafter deposits, but has not been developed to any considerable extent.

In the statement of the production of silver, no account is taken of the rich silver-copper ores which were obtained at the old Hazel mine, north of Val Horn, Culberson county, many years ago, and shipped to the El Paso smelter. Some of these ores are said to have carried as much as 2,000 ounces in silver per ton. Considerable operations were carried on there at one time, and of recent years attempts have been made to re-open the property. Aside from the silver value in the ores of that part of the Sierra Diablo, there are excellent copper ores as well. It is a long and tedious story to explain why such promising mining districts in Texas have not been developed. It is no part of our present purpose to do this. We merely call attention to the fact that they have not been developed, and this in spite of their known values. From the time when Von Streeruwitz first described these districts in the reports of the Texas Geological Survey, 1889-1892, to the present moment, there has been practically no systematic attempt to bring these ores into commercial use, if we except the operations at the Hazel mine, which are chiefly of historic interest.

The following statement gives the production and value of the silver, 1882-1913:

	Production.	
Year.	Troy ozs.	Value.
1882-1886	. 155,039	\$ 154,263
1887	. 193,798	189,534
1888		218,604
1889	. 324,165	303,418
1890	. 300,690	312,709
1891	. 375,000	$370,\!500$
1892	. 328,100	287,087
1893	. 349,400	272,530
1894	. 429,314	270,467
1895	450,000	292,850
1896	. 525,400	352,543
1897	. 404,700	241,970
1898	472,900	283,200
1899	520,000	312,000
1900	. 477,400	295,988
1901	. 472,400	284,040

	Production,	
Yes	ar. Troy ozs.	Value.
1902		236,486
1903		245,376
1904		213,935
1905		234,054
1906		202,187
1907		201,500
1908	447,000	239,100
1909	408,100	212,200
1910	864,400	196,800
1911	444,200	239,900
1912		249,731
1913	427,553	258,242
7	Fotal	\$7,171,214

Sulphur.

To the close of the year 1913 the production of sulphur probably did not exceed 12,000 to 13,000 tons, valued at about \$250,000. All of this came from the plant of the Freeport Sulphur Company, at the mouth of the Brazos river. The operations here are briefly described under Brazoria county. During the year 1914 the capacity of the Freeport plant was greatly increased, so that the production for 1914 will be much larger than for 1913. The present capacity is about 120,000 tons of sulphur a year, and Texas now ranks second, Louisiana being first. All of this sulphur comes from deposits lying 1,000 feet and more below the surface. It is obtained not through shafts but by forcing superheated water (and steam) through pipes, dissolving and suspending the sulphur and pumping it back.

There is another known area of sulphur where the material sets in practically at the surface and extends to unknown depths. The deepest pit, 41 feet, left off in material carrying 46 per cent in sulphur. Other pits, from 10 to 20 feet in depth, show masses of almost pure sulphur.

This area is in Culberson county, trans-Pecos Texas, from 40 to 50 miles northwest of Pecos and about the same distance north of Toyah.

Nearly twenty years ago St. Louis people built a sulphurextracting plant in this field, and produced, it is said, two carloads of excellent sulphur. Nothing has been done since that time, although one of the reports made states that there are 300,-000 tons of sulphur within forty feet of the surface, near Maverick Springs, Section 13, Block 113, Culberson county (formerly the eastern part of El Paso county). The nearest railroad point to these deposits would be about fourteen miles, Dixieland, or Riverton, on the branch of the Santa Fe system running north from Pecos, Reeves county.

It would appear that these deposits are well worth consideration (see further under Culberson county). The latest publication on the geology of that part of the State is the report of George B. Richardson, entitled "Reconnaissance in trans-Pecos Texas north of the Texas & Pacific Railway." This was published by the University Mineral Survey as its Bulletin No. 9, November, 1904, but has long been out of print. The field work was done in co-operation with the United States Geological Survey.

A small amount of tin has been credited to Texas during the last few years, all of it from the deposits on the eastern side of the Franklin mountains in El Paso county, about sixteen miles north of El Paso. The entire production has been valued at \$5,000.

The tin ore here is cassiterite (oxide of tin) and stannite, and it occurs in granite. Considerable lumps of extraordinary richness have been found on the surface, some of them assaying more than 40 per cent of tin. A small concentrating mill and smelter was built on the property several years ago, and some pig tin' was made, but operations were not continued, and nothing further has been done for two or three years.

The scarcity of tin ore in the United States, the nearness of these deposits to railroad transportation (less than five miles to the Rock Island lines) and the fact that ore of extraordinary richness has been found here, would seem to render the situation of peculiar interest. The Franklin mountains have been subjected to a great erosion, and it is possible that prospecting shafts sunk near the foothills through the "wash" would come upon a workable deposit of stream tin. The ore is very heavy, and, under ordinary circumstances, would not travel far. It does not appear to be unduly mixed with other minerals of like density, so that the concentration should not offer any unusual difficulties.

Tin ore has also been reported from Mason county, in the vicinity of Willow creek and Herman's creek, a few miles east of

the town of Mason. It is asserted that slag carrying particles of metallic tin has been found, indicating some ancient workings. This is an interesting statement, and is worthy of much more attention than has been given to it. The locality is about twenty-five miles west of Llano, the terminus of the Austin & Northwestern Railway (Sunset-Central System), and about the same distance southeast of Brady (Santa Fe and Frisco Systems). In the museum of the Bureau of Economic Geology and Technology at the University there is an excellent piece of tin ore, which is said to have come from Mason county. So far as concerns geological conditions favorable to the occurrence of tin ore, there is no reason for doubting that such ore has been found in Mason county, at this locality and also near Streeter.

Zinc.

The total amount of zinc credited to the State is valued at \$55,832, all of it from El Paso county. The ore was "dry bone" (zinc carbonate). This same ore occurs, also, in Presidio county, two miles west of Shafter, where it is reported to exist in considerable quantities. It is also reported from the southern part of Brewster county, Boquillas district.

Zinc blende (sulphide of zinc) occurs northwest of Boracho, Culberson county; in association with silver, lead and copper ores in the Quitman mountains, El Paso county; and in association with ores of lead and copper, in Hooking Valley, nine miles west of the town of Burnet, Burnet county. At this latter locality it occurs in a gneissoid granite, and a good deal of prospecting work has been done during the last two years. An interesting, but seemingly sporadic, occurrence of zinc blende is near the town of St. Jo, in the eastern part of Montague county, in Cretaceous limestone. Of the known deposits of zinc ore those near Shafter, Presidio county, would appear to be the more important. The locality is about fifty miles from rail (Southern Pacific, at Marfa).

Texas Mineral Products, 1882-1886.	
Clay products, estimated value\$	1,500,000
Coal (including lignite), estimated, 500,000 tons	1,000,000
Iron ore, 33,100 tons	33,100
Pig iron, 12,400 tons, estimated value	248,000
Silver, 155,039 ounces, commercial value	154.263
All other products, including building stone, cement,	•
gypsum, salt, etc., estimated	2,000,000
Total value for five years\$	4,935,363

Note.—The value of the building stone used in the construction of the State Capitol is taken at \$1,000,000 and is included in the above figures.

Texas Mineral Products, 1887.

Zolido Pilliothi II-datos, Esott	
Clay products, estimated\$	400,000
Coal and lignite, 75,000 short tons	150,000
Iron ore, 9,000 short tons	9,000
Lime, 80,000 barrels, estimated value	80,000
	78,000
Pig iron, 3,900 long tons	189,534
Silver, 193,798 ounces, commercial value	100,004
All other products, including building stone, cement,	100 000
gypsum, salt, etc., estimated	100.000
Total\$	1 006 524
Total	1,000,554
Texas Mineral Products, 1888.	•
Classical and analysis of the continuous analysis of the continuous and analysis of the continuous and analysis of the continuous and analysis of the continuous analys	E00 000
Clay products, estimated value\$	500,000
Coal and lignite, 90,000 short tons	184,500
Iron ore, estimated, 15,000 short tons	15,000
Lime, 129,475 barrels	125,000
Pig iron, 5,862 long tons	117,240
Silver, 232,558 ounces, commercial value	218,604
All other products, including building stone, cement,	
gypsum, salt, etc	125,000
en e	
Total\$	1,255,344
Texas Mineral Products, 1889.	
Clay products, estimated\$	600,000
Coal and lignite, 128,216 short tons	340,617
Gold, value	6,828
Granite, value	22,550
Iron ore, 13,000 short tons	13,000
Lime, value	6,700
Limestone, value	217,835
Mineral waters, 213,700 gallons	10,354
Petroleum, 48 lbs., value	340
Pig iron, 4.044 long tons	80,880
Sandstone, value	14,651
Silver, 324.165 ounces, commercial value	303,418
All other products, including cement, gypsum, salt, etc	143,300
Total\$	1,760,473
Marian Mile - 1 Dec decide 4000	
Texas Mineral Products, 1890.	
Cement, hydraulic, 40,000 barrels\$	40,000
Clay products, estimated value	700,000
Coal and lignite, 184,440 short tons	465,900
Granite, value	22,550
Iron ore, 22,000 tons	22,000
Mineral waters, 298,200 gallons	16.040
	227
Petroleum, 54 barrels	
Pig iron, 9,669 long tons	193,380
Silver, 300,690 ounces, commercial value	312,709
All other products, estimated	200,000
Total\$	1,992,806

Texas Mineral Products, 1891.

Cement, hydraulic, 40,000 barrels\$	40,000
Clay products, estimated	800,000
Coal and lignite, 172,100 short tons	412,360
	75,000
Granite, value	51,000
Iron ore, 51,000 long tons	175,000
Limestone, value	170,000
Mineral waters, 271,410 gallons	23,132
Petroleum, 54 barrels	227
Pig iron, 18,602 long tons	372,040
Sandstone, value	6,000
Silver, 375,000 ounces, commercial value	370,500
All other products, estimated value	200,000
-	
Total\$	2,525,259
Texas Mineral Products, 1892.	
Cement, hydraulic, 40,000 barrels\$	40,000
Clay products, estimated value	900,000
Coal and lignite, 245,690 short tons	569,333
Granite, value	50,000
Iron ore, 24,903 long tons	24,000
Timestone welve	180,000
Limestone, value	24,535
Mineral water, 405,400 gallons	$\begin{array}{c} 24,335 \\ 225 \end{array}$
Petroleum, 45 barrels	
Pig iron, 8,613 long tons	172,260
Salt, 121,250 barrels	99,500
Sandstone, value	48,000
Silver, 328,100 ounces, commercial value	287,087
All other products, estimated value	200,000
•	⊿00,000
Total\$	
Texas Mineral Products, 1893.	3,295,240
Texas Mineral Products, 1893. Cement. hydraulic. 10,000 barrels	3,295,240 27,500
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels\$ Clay products, estimated value	3,295,240 27,500 1,000,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407 38,991
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels\$ Clay products, estimated value	3,295,240 27,500 1,000,000 688,407 38,991 25,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407 38,991 25,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957 500 210
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. \$ Iron ore, 25,620 long tons. \$ Limestone, value. \$ Mineral waters, 359,070 gallons. \$ Natural gas, value. \$ Petroleum, 50 barrels. \$ Pig iron, 6,215 long tons.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957 500 210 124,300
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt. 126,000 barrels.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957 500 210 124,300 110,267
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957 500 210 124,300 110,267 77,675
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value. Silver, 349,400 ounces, commercial value.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 28,100 21,957 500 210 124,300 110,267 77,675
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value. Silver, 349,400 ounces, commercial value.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value. Silver, 349,400 ounces, commercial value. All other products, estimated.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Sandstone, value. Silver, 349,400 ounces, commercial value. All other products, estimated. Total \$ Texas Mineral Products, 1894.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000 2,655,437
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Salt, 126,000 barrels. Silver, 349,400 ounces, commercial value. All other products, estimated. Total \$ Texas Mineral Products, 1894.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. \$ Coal and lignite, 302,206 short tons. \$ Granite, value. \$ Iron ore, 25,620 long tons. \$ Limestone, value. \$ Mineral waters, 359,070 gallons. \$ Natural gas, value. \$ Petroleum, 50 barrels. \$ Pig iron, 6,215 long tons. \$ Salt, 126,000 barrels. \$ Sandstone, value. \$ Silver, 349,400 ounces, commercial value. \$ All other products, estimated. \$ Total \$ Texas Mineral Products, 1894. Asphalt, 3,000 short tons. \$ Cement—Hydraulic, 12,000 barrels, \$18,000; Portland,	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000 2,655,437
Texas Mineral Products, 1893. Cement, hydraulic, 10,000 barrels. \$ Clay products, estimated value. Coal and lignite, 302,206 short tons. Granite, value. Iron ore, 25,620 long tons. Limestone, value. Mineral waters, 359,070 gallons. Natural gas, value. Petroleum, 50 barrels. Pig iron, 6,215 long tons. Salt, 126,000 barrels. Salt, 126,000 barrels. Silver, 349,400 ounces, commercial value. All other products, estimated. Total \$ Texas Mineral Products, 1894.	3,295,240 27,500 1,000,000 688,407 38,991 25,000 21,957 500 210 124,300 110,267 77,675 272,530 250,000 2,655,437

Total\$ 2,856,

Texas Mineral Products, 1896.	
Asphalt, crude rock, 5,000 tons\$ Cement—Hydraulic, 12,000 barrels, \$18,000; Portland,	25,000
8,000 barrels, \$24,000	42,000
\$58,081	915,753
Coal and lignite, 544,015 short tons	896,251
Gold, 387 ounces	8,000
Gypsum, 16,022 short tons	25.000
Iron ore, 4,771 long tons	3,583
Lime, value	60,000
Limestone, value	77.252
Mineral waters, 4,005.912 gallons	172,138
Petroleum, 1.450 barrels	4,000
Pig iron, 1,221 long tons	24,420
Salt, estimated 150,000 barrels	75,000
Sandstone, value	36,000
Silver, 525,400 ounces, commercial value	352,543
All other products, estimated	240,000

....\$ 2,956,940

Total

Texas Mineral Products, 1897.

Asphalt, 65 short tons\$ Cement—Hydraulic, 11,390 barrels, \$17,085; Portland,	650
7,779 barrels, \$23,334	40,419
eso one	1.197,039
\$62,210	972,323
Gold, 358 ounces	7,400
Granite, value	3.500
Gypsum, 24,454 short tons	65,651
Iron ore, 13,588 long tons	13,588
Lime, value	21,862
Limestone, value	57,258
Mineral waters, 2,060,292 gallons	38,745
Petroleum, 65,975 barrels	65,975
Pig iron, 6,175 long tons	123,500
Salt, estimated, 225,500 barrels	122,750
Sandstone, value	30,000
Silver, 404,700 ounces, commercial value	241,970
All other products, estimated	328,138
Total\$	3,330,798
Texas Mineral Products, 1898.	
Annhalt 00 about tons	1 000
Asphalt, 80 short tons\$ Cement—Hydraulic, 11,000 barrels, \$16,500; Portland,	1,000
8.000 parrels. \$24.000	40,500
Clay products—Brick and tile, \$631.738; pottery, \$55	.,
342; miscellaneous, \$71,131	758,211
Coal and lignite, 686,734 short tons	1,139,763
Granite, value	4,685
Gypsum, 34,215 short tons	58,130
Iron ore, 9,705 tons	3,882
Lime, value	$38,\!531$
Limestone, value	70,321
Mineral waters, 842,100 gallons	25,120
Petroleum, 546,070 barrels	382,249
Pig iron, 5,178 long tons	103,560
Salt, 254,284 barrels	119,700
Sandstone, value	77,190
Silver, 472,900 ounces, commercial value	283,200
All other products, estimated	311,469
Total\$	0.415.511
	3,417,511
Texas Mineral Products, 1899.	3,417,511
Cement—Hydraulic, 12,000 barrels\$	12,400
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery,	12,400
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery, \$82,052	12,400 1,221,119
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery, \$82,052	12,400 1,221,119 1,334,895
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery, \$82,052	12,400 1,221,119 1,334,895 6,900
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery, \$82,052 Coal and lignite, 883,832 short tons Gold, 334 ounces	12,400 1,221,119 1,334,895
Cement—Hydraulic, 12,000 barrels\$ Clay products—Brick and tile, \$1,139,067; pottery, \$82,052 Coal and lignite, 883,832 short tons. Gold, 334 ounces. Granite, value	12,400 1,221,119 1,334,895 6,900 84,945
Cement—Hydraulic, 12,000 barrels	12,400 1,221,119 1,334,895 6,900 84,945 110,000

Sandstone, value.....

Silver, 472,400 ounces, commercial value......

All other products, estimated.....

Total\$ 6,647,926

140,000

111,568

284,040

306,413

Texas Mineral Products, 1902.

Cement—Hydraulic, 17,000 barrels, \$28,900; Portland, 165,500 barrels, \$234,950\$ Clay products—Brick and tile, \$1,595,612; pottery	263,850
ciay products—blick and tite, \$1,555,612, pottery	1 609 014
\$98,202	1,693,814
Coal and lignite, 901,912 short tons	1,477,245
Granite, value	60,000
Gypsum, estimated	100,000
Iron ore, 6,516 tons	6,434
Lime, value	82,500
Limestone, value	228,662
Mineral waters, 6,568,550 gallons	362,446
Natural gas, value	14,953
Potroloum 18 083 658 harrels	3,998,097
Petroleum, 18,083,658 barrels	239,350
Salt, 347,906 barrels	143,683
Candatana rollia	165.565
Sandstone, value	
Silver, 446,200 ounces, commercial value	236,486
All other products, estimated	317,500
Total\$	0.200 505
10tai	9,390,989
Texas Mineral Products, 1903.	
TOMAS MINCIUM TTOMACUS, 1000.	
Asphalt, 2,158 short tons\$	30,550
Clay products—Brick and tile, \$1,374,914; pottery,	00,000
oray products—Drick and the, \$1,374,514, pottery,	1 475 445
\$100,531	1,475,445
Clay, raw, value	2,865
Coal and lignite, 926,759 short tons	1,505,383
Coal tar, 154,629 gallons	13,373
Coal gas, 131,610,100 cubic feet	205,949
Gas coke, 8,755 short tons	50,112
Granite, value Iron ore, 34,050 long tons	173,325
Iron ore. 34.050 long tons	34,050
Lime, value	74,038
Limestone, value	262,053
Mineral waters, 939,390 gallons	53,613
Natural gas, value	13,851
Petroleum, 17,955,572 barrels	7,517,479
Pig iron, 11,653 long tons	233,060
	400,000
Quialtailwan 5 090 floaka	911 919
Quicksilver, 5,029 flasks	211,218
Salt, 314,000 barrels	117,647
Salt, 314,000 barrels	117,647 114,381
Salt, 314,000 barrels	117,647 114,381 245,376
Salt, 314,000 barrels	117,647 114,381
Salt, 314,000 barrels	117,647 114,381 245,376 325,962
Salt, 314,000 barrels	117,647 114,381 245,376 325,962
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total	117,647 114,381 245,376 325,962
Salt, 314,000 barrels	117,647 114,381 245,376 325,962
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904.	117,647 114,381 245,376 325,962 12,766,865
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt. 3 short tons.	117,647 114,381 245,376 325,962
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt, 3 short tons. Clay products—Brick and tile, \$1,429,596; pottery,	117,647 114,381 245,376 325,962 12,766,865
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt, 3 short tons. Clay products—Brick and tile, \$1,429,596; pottery, \$106,501	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097 1,983,636
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt, 3 short tons. Clay products—Brick and tile, \$1,429,596; pottery, \$106,501 Coal and lignite, 1,195,944 short tons. Coal tar, 185,364 gallons.	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097 1,983,636
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt, 3 short tons. Clay products—Brick and tile, \$1,429,596; pottery, \$106,501 Coal and lignite, 1,195,944 short tons. Coal tar, 185,364 gallons. Coal gas, 139,190,500 cubic feet.	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097 1,983,636 13,838 211,962
Salt, 314,000 barrels. Sandstone, value. Silver, 454,400 ounces, commercial value. All other products, estimated. Total Texas Mineral Products, 1904. Asphalt, 3 short tons. Clay products—Brick and tile, \$1,429,596; pottery, \$106,501 Coal and lignite, 1,195,944 short tons. Coal tar, 185,364 gallons.	117,647 114,381 245,376 325,962 12,766,865 60 1,536,097 1,983,636 13,838

· · · · · · · · · · · · · · · · · · ·	
Granite, value. Gypsum, estimated value. Iron ore, estimated value. Lime, 35,318 short tons. Limestone, value Mineral waters, 1,142,500 gallons. Natural gas (including Alabama), value. Petroleum, 22,241,413 barrels. Quicksilver, 5,336 flasks. Salt, 376,695 barrels. Sand, 9,958 short tons. Sandstone, value. Silver, 385,576 ounces, commercial value. Strontium sulphate (celestite), 17 short tons. All other products, estimated.	348,317 100,000 12,000 141,500 387,061 64,923 14,082 8,156,220 232,116 149,246 6,783 209,313 213,935 500 400,000
Texas Mineral Products, 1905.	
Clay products — Brick and tile, \$1,618,157; pottery, \$100,788 \$ Coal and lignite, 1,200,684 short tons. Gold, 12 ounces. Granite, value. Gypsum, estimated. Lime, 31,984 short tons. Limestone, value. Mineral waters, 1,526,970 gallons. Natural gas, estimated. Petroleum, 28,136,189 barrels. Quicksilver, 4,723 flasks. Salt, 444,832 barrels. Sand and gravel, value. Sandstone, value. Silver, 417,200 ounces. All other products, including cement, iron ore, pig iron, etc.	248 132,193 100,000 142,470 171,847 144,421 14,000 7,552,262 172,362 142,993 146,462 123,281 234,054
Texas Mineral Products, 1906.	
Asphalt, 24,900 short tons\$ Clay products — Brick and tile, \$1,860,963; pottery.	306,750
\$108,635	1,969,598 5,984 2,178,901
feet; gas coke, 11,984 short tons. Copper, pounds, 51,377. Gold, 77 ounces. Granite, value. Gypsum, estimated. Liron ore, 36,660 long tons. Lime, 41,183 short tons. Limestone, value. Mineral waters, 1,045,315 gallons.	355,560 9,916 1,592 168,061 100,000 36,660 192,527 239,125 122,085

Natural gas (including Alabama and Louisiana) Petroleum, 12,567,897 barrels. Quicksilver, 4,761 flasks. Salt, 360,733 barrels. Sand and gravel, 314,110 short tons. Sandstone, value. Silver, 301,772 ounces, commercial value. Zinc, 8 short tons. All other products.	6,565,578 178,829 170,559 159,367 111,533 202,187 976
Total	.\$14,751,037
Texas Mineral Products, 1907.	
Asphalt, 53,649 short tons. Clay products (brick, tile and pottery). Coal and lignite, 1,648,069 short tons. Gold, 48 ounces. Granite, value. Lead, 10 short tons. Lime, 38,101 short tons. Limestone, value. Mineral waters, 1,146,279 gallons. Natural gas (including Alabama and Louisiana) Petroleum, 12,322,696 barrels. Quicksilver, 3,686 flasks. Salt, 356,086 barrels. Sand and gravel, 283,484 short tons. Sandstone, value. Silver, 305,300 ounces, commercial value. Zinc, 16 short tons. All other products.	2,557,661 2,778,811 1,000 122,158 1,060 186,372 267,757 152,233 178,276 10,410,865 148,387 226,540 142,294 108,047 201,500
Total	.\$19,806,458
Texas Mineral Products, 1908.	
Asphalt, 17,167 short tons. Clay products (brick, tile and pottery). Coal and lignite, 1,895,377 short tons. Gold, 24 ounces. Granite, value. Lead, 42 short tons. Lime, 33,725 short tons. Limestone, value. Mineral waters, 1,586,634 gallons. Petroleum, 11,206,464 barrels. Quicksilver, 2,384 flasks. Salt, 442,571 barrels. Sand and gravel, 309,250 short tons. Sandstone, value. Silver, 447,000 ounces, commercial value. All other products.	2,066,735 3,419,481 500 190,055 3,528 144,118 314,571 151,032 6,700,708 122,260 255,652 140,067 154,948 239,100 959,734
Note.—The production of iron ore in 1908 was 55, ued at \$30,663.	.\$15,212,929 966 tons val-

Texas Mineral Products, 1909.

	Quantity.		Value
Asphalt, short tons	46.304	\$	857,204
Cement, Portland, barrels	656.361	•	808,997
Clay products	000,002		3,148,463
	1,112,228		2,539,064
Coal, short tons	3,456		449
Copper, pounds	5,400		
Gems and precious stones			234
Gold, fine ounces, Troy	19		400
Granite, value			173,271
Lead, short tons	42		3,612
Lignite, short tons	712,212		602,881
Lime, short tons	53,578		244.845
Limestone, value			341.528
Mineral waters, gallons sold	1,033,476		98,499
Natural gas, not separately reported.	1,000,110		00,100
	0 594 467		6.793.050
Petroleum, barrels	9,534,467		
Quicksilver, flasks	4,188		194,084
Salt, barrels	400,315		260,286
Sand and gravel, short tons	676,506		246,365
Sandstone, value			61,600
Silver, fine ounces, Troy	408,100		212,200
Other products			1,207,174

Total\$17,217,807 Note.—Other products include natural cement, fuller's earth, gypsum, natural gas, pig iron, sand-lime brick.

Texas Mineral Products, 1910.

	Quantity.		Value
Asphalt, short tons	57.713	\$	1.040,825
Cement, Portland, barrels	1,292,445	•	1,643,729
Clay products	1,202,110		2,863,930
	1,010,944		2,397,858
Coal, short tons			376
Copper, pounds	2,961		
Gems and precious stones, etc			834
Gold, ounces, Troy	19		400
Granite, value			66,909
Lead, short tons	33		2,904
Lignite, short tons	881,232		763.107
Lime, short tons	48,200		226,952
Limestone, value	10,200		447,239
	1,241,248		128.549
Mineral waters, gallons sold	1,241,240		140,040
*Natural gas, cubic feet			
Petroleum, barrels	8,899,266		6,605,755
Quicksilver, flasks	3,320		154,413
Salt, barrels	382,164		272,568
Sand and gravel, short tons	1,006,584		517,225
Sandstone, value	_,,		40,471
Silver, fine ounces, Troy	364,400		196,800
	301,100		1.012,607
All other			1,012,001
		_	110 000 451

^{*}In 1910 the production of natural gas was included in that of Louisiana and Alabama.

⁴⁻Min.

Texas Mineral Products, 1911.

		A .
	Quantity.	Value
Asphalt, short tons		\$ 786,785
Cement, Portland, est. barrels		1,785,000
Clay products		2,669,399
Coal, short tons		2,491,361
Copper, pounds		12
Gems and precious stones, est		1,000
Gold, fine ounces, Troy	189	3,900
Granite, value	for a second second	70,488
Lead, short tons	57	513
Lignite, short tons	870,206	781,927
Lime, short tons		218,007
Limestone, value		490,289
Mineral waters, gallons sold		158,367
Natural gas, cubic feet		1,014,945
Petroleum, barrels		6,554,552
Quicksilver, flasks, est		84,000
Salt, barrels	385,200	299,537
Sand and gravel, short tons	1,048,352	543,866
Sandstone, value		28,000
Silver, fine ounces, Troy	444,200	239,900
		595,456
All other		
All other		
All other		\$18,817,304
All other		\$18,817,304
All other	Droducte 1010	\$18,817,304
All other	Products, 1912.	\$18,817,304
All other	· .	
Total	Quantity.	Value
Total	Quantity. 94,530	Value \$ 1,404,266
Total Texas Mineral I Asphalt, short tons Cement, barrels	Quantity. 94,530	Value \$ 1,404,266 2,062,124
Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products	Quantity. 94,530 1,762,780	Value \$ 1,404,266 2,062,124 2,892,510
Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons.	Quantity. 94,530 1,762,780 1,083,952	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds	Quantity. 94,530 1,762,780 1,083,952	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones.	Quantity. 94,530 1,762,780 1,083,952 721	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy.	Quantity. 94,530 1,762,780 1,083,952	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value	Quantity. 94,530 1,762,780 1,083,952 721	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939
All other Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lignite, short tons.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 3990,705 45,529	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons Lead, short tons Lignite, short tons Lime, short tons Limestone, value	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 990,705 45,529	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds. Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lignite, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est. Salt, barrels	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. L	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228 384,942
Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds. Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est. Salt, barrels Sand and gravel, short tons. Sandstone, value	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064 716,468	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228 384,942 82,501
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds. Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est. Salt, barrels Sand and gravel, short tons. Sandstone, value Silver, fine ounces, Troy.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064 716,468 406,067	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228 384,942 82,501 249,731
Total Texas Mineral I Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est. Salt, barrels Sand and gravel, short tons. Sandstone, value Silver, fine ounces, Troy. Zinc, short tons	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064 716,468	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228 384,942 82,501 249,731 16,422
Asphalt, short tons. Cement, barrels Clay products Coal, short tons. Copper, pounds. Gems and precious stones. Gold, fine ounces, Troy. Granite, value Gypsum, short tons. Lead, short tons. Lignite, short tons. Lime, short tons. Lime, short tons. Limestone, value Mineral waters, gallons sold. Natural gas, cubic feet. Petroleum, barrels Quicksilver, flasks, est. Salt, barrels Sand and gravel, short tons. Sandstone, value Silver, fine ounces, Troy.	Quantity. 94,530 1,762,780 1,083,952 721 3 160,863 33 990,705 45,529 1,292,992 7,470,373,000 11,735,057 2,700 373,064 716,468 406,067	Value \$ 1,404,266 2,062,124 2,892,510 2,491,361 119 145 63 67,613 356,579 2,939 880,788 236,101 530,251 151,395 1,405,077 8,852,713 114,750 290,228 384,942 82,501 249,731

.\$22,797,015

Texas Mineral Products, 1913.

	Quantity.	Value
Asphalt, short tons		\$ 1,970,354
Cement, barrels	2.108,737	2,663,063
Clay products		3,049,349
Coal, short tons	1,197,907	2,774,956
Copper, pounds	34,665	5,373
Gems and precious stones		344
Gold, Troy ounces	16	340
Granite, value		76,067
Gypsum, short tons	161,090	345,749
Iron ore, long tons	27,000	27,000
Lead, short tons	113	9,910
Lignite, short tons	1.144.515	1,104,759
Lime, short tons	45,897	255,893
Limestone, value	,	590,289
Mineral waters, gallons	1.187.612	132,488
Natural gas, cubic feet1		2,073,823
Petroleum, barrels	15.009.478	14.675.593
Quicksilver, flask, est	2,700	108,000
Salt, barrels	355,529	278,008
Sand and gravel, short tons	870.943	455,908
Sandstone, value		58,750
Silver, Troy ounces	427,553	258,242
Sulphur, short tons	12,000	240,000
Zinc, short tons	326	36,546
Miscellaneous		441,901
Total		021 666 010

CHAPTER II.

DISCUSSION OF COUNTIES.

Anderson-Duval.

Before discussing the mineral resources of the several counties, some explanation may be necessary in respect of the plan pursued.

It has not been the intention to list every mineral or mineral resource within each county, for this would be an almost endless task and unprofitable withal. The purpose has been to consider such things as now appear to be of commercial value or within commercial possibilities. It is realized that important discoveries may be made at any time, especially in petroleum and natural gas. Furthermore, the progress of industrial chemistry. with all of its allied sciences, is so rapid that what is today of no special value may be of considerable value tomorrow. Take, for instance, the Doremus process for the extraction of alumina from highly aluminous clays, relatively free of iron. Up to the present time the chief source of alumina (from which metallic aluminum, and salts of alumina are made) has been certain well known bauxites, from Georgia, Alabama, Arkansas, etc. These bauxites are required to carry about 60 per cent of alumina soluble in sulphuric acid and to have a low content in iron. Such clays are scarce, and the industry of mining and preparing them has been restricted to favored localities.

The Doremus process, however, using hydrofluoric acid, promises to bring into use aluminous clays not necessarily soluble in sulphuric acid, nor of as high a content in alumina. We have in Texas no known deposits of bauxite, but we have very large deposits of highly aluminous clays almost free of iron. These clays may come into use as a source of alumina.

As another instance, take Ichthyol, a medicinal preparation made from pyropissit (a variety of brown coal, or lignite) or natural asphalt. It may be found that this substance can be made from asphaltic limestone or asphaltic sandstone, of which we have large supplies in Texas.

The deposits of celestite (sulphate of strontium) in this state are known to be of exceptional purity, but they are not now utilized.

In speaking of mineral resources, one must bear in mind that not everything listed may now be of value, for the requirements of trade, distances from transportation, etc., must be considered.

It would be a man unmindful of the conditions of modern progress who would venture to say that such and such things are not to be ranked among mineral resources because they are not now utilized. If one is to err, it is better to err as a conservative optimist rather than as a progressive pessimist.

It is to be regretted that we have so little information about large areas in Texas. Many of the more populous counties, already within easy reach of transportation, are showing marked progress. During the last ten years the value of our mineral products has risen from \$14,353,270 to \$31,666,910. Since 1908 the value has more than doubled. This increase has not been due to the value of metals or metallic ores, but to the common things that minister more particularly to every day life.

But there is in Texas today a total area of more than 64,000 square miles (a territory larger than the state of Missouri) concerning which our information is so meager that for all practical purposes we must consider its mineral resources as unknown. This area comprises 67 counties with a total population of 194,043 and with 1,718 miles of railroads. It represents 25 per cent of the total area of the state, 5 per cent of the population, and 11 per cent of the railroad mileage. Nearly all of this domain is in the western and northwestern part of the state, a region now being penetrated by several lines of railroad.

It may be that most of these counties are not within any known mineral belt, as the term is usually employed, but they have the liveliest interest in the most important of all minerals—that is, water. No fund derived from public taxation could be expended to better advantage than in the study of water conditions in those counties, but this very matter has received scant attention. The only systematic study of this most important matter that has been attemped for many years was begun by this Bureau in Hale county in the fall of 1914. This work will be continued as funds are supplied, for we realize that it is a

vital question and one that should receive the most careful consideration.

The property valuation and railroad mileage are for the year 1913.

The elevations given for the county towns and those given in the long list of elevations have been derived from various sources, such as the list given in "Gazetteer of Texas," published by the United States Geological Survey; data supplied by railroads, by private observers, etc. They are thought to be substantially correct. The figures given are feet above sea level.

The elevations of hills, mountains, mountain ranges, etc., are taken, for the most part, from the topographic sheets of the United States Geological Survey. Our authority for the statement that El Capitan, Guadalupe mountains, Culberson county, is the highest point in Texas is the El Paso Folio of that Survey. This peak probably exceeds the height of Old Baldy, Jeff Davis county, by 300 to 400 feet.

The latitude, longitude and magnetic declination are taken from the reports of the United States Coast and Geodetic Survey, the magnetic declination being corrected to the year 1905, unless otherwise stated. The declination is east and varies from 7 deg. 1 min., at Orange, in the extreme southeastern part of the state, to 12 deg. 33 min., at Dimmit, Castro county, in the southwest part of the Panhandle. At El Paso, which is considerable further west, the declination is 12 deg. 3 min.

The population is from the census of 1910, unless otherwise stated.

ANDERSON COUNTY.

Location—Northeast of center; between the Trinity and the Neches rivers.

County seat—Palestine; population, 11,413; elevation, 495 ft.; lat. 31° 47′; long. 95° 38′; mag, dec. 7° 51′.

Area, square miles, 1,060.

Population, 29,650.

Railroads, 3.

Miles of railroad, 58.75.

Assessed valuation of property of all kinds, \$13,688,660.

Mineral resources—Asphalt rocks; clays; iron ore; lignite; limestone; salt; gravel.

The asphalt rocks of Anderson county are bituminous sandstones. They occur at distances varying from ten to thirteen miles northeast of Palestine. Samples from three separate localities were examined by the University Mineral Survey, with the following results:

Analyses of Bituminous Sandstones from Anderson County

Asphaltene	$\begin{array}{c} \textbf{12.09} \\ \textbf{76.71} \end{array}$	Haswell well. Per cent. 0.92 16.52 81.60 0.61	Brule's Hole. Per cent. 2.35 5.82 91.83 0.18
Total bitumen		$\frac{0.01}{17.44}$	$\frac{0.18}{8.17}$

With the exception of the rock from the old tar well, Jasper county, the bituminous sandstone from the Chapel well contains more bitumen than any rock we have examined.

There are excellent clays in Anderson county, but they have not been fully investigated.

Northwest of Palestine there is an area of iron ore covering about ten square miles. The ore is of the laminated variety (limonite, brown hematite) and showed the following average composition:

	Per cent.
Metallic iron	44.62
Silica	11.17
Alumina	
Phosphorus	0.49

There is a much smaller area to the east of this, while to the north there is an area considerably larger, viz., about fifteen square miles. In this larger area the ore is laminated and gave the following analysis:

	Per cent.
Metallic iron	48.65
Silica	11.35
Alumina	8.00
Phosphorus	

There are other iron ore areas in Anderson county, especially on the high divide between Still's creek and Ionic creek, where the area is about nineteen square miles. The laminated ores here had the following average composition:

· · · · · · · · · · · · · · · · · · ·		Per cent.
Metallic iron	٠.	46.61
Silica		10.72
Alumina		10.11
Phosphorus, trace to		0.30

These ores are in the central-west part of the county, around Fosterville, Nechesville, etc. South of Palestine the iron ores seem to be more siliceous, and, consequently, of less value. The iron ore area appears to cover 47 square miles.

The lignite area in Anderson county occupies a large part of the county, but no mining operations are carried on. On Caddo creek, about seventeen miles northeast of Palestine, where there is an outcrop of lignite two feet thick, the lignite had the following composition:

Moisture													1	Per	cent.
Volatile ($\operatorname{\mathbf{com}} \mathfrak{b}$	ust	ible	1	na	tte	er.								41.28
Fixed car	bon					٠.									42.73
$\mathbf{A}\mathbf{s}\mathbf{h}$					٠,٠		•.	٠.	•	•					7.64
	•														100.00
Sulphur															1.94

The limestones in Anderson county occur six miles west of Palestine, at Salt City (old Saline). The stone here is white, chalky, and fossiliferous, with seams of yellow calcite. The age is Upper Cretaceous, although the surrounding territory is Tertiary. The following analysis represents this stone:

]	er?	cent.
Silica		3.28
Alumina		2.93
Oxide of iron		1.07
Lime		50.72
Magnesia		None
Carbonic acid		38.30
Loss on ignition		
	_	
	1	00.10

A considerable salt plant is in operation at Salt City, using brines.

ANDREWS COUNTY.

Location—West Texas, borders on New Mexico. County seat—Andrews; population, no returns for 1910. Area, square miles, 1,590. Population, 975. Railroads, none.

Assessed valuation of property of all kinds, \$2,387,860.

Mineral resources—Practically unknown. Salt occurs in shallow basins and as deposits from old lakes.

ANGELINA COUNTY.

Location—East Texas; between the Neches and the Angelina rivers.

County seat — Lufkin; population, 2,749; elev. 323; lat. 31° 21'; long. 94° 44'; mag. dec. 7° 44'.

Area, square miles, 880.

Population, 17,705.

Railroads, 7.

Miles of railroad, 159.

Assessed valuation of property of all kinds, \$10,078,407.

Mineral resources — Clays; iron ore; lignite; petroleum?; natural gas?; gravel; asphaltic sandstone.

While there are many excellent clays in Angelina county, they have not been fully investigated. The same may be said of the lignite (brown coal), although some analyses may be given. A brown coal, almost like pitch coal, from the Angelina river, had the following composition:

P	er cent.
Moisture	. 12.15
Volatile combustible matter	
Fixed carbon	. 41.19
Ash	. 6.50
Sulphur	. 3.02
	100.00

It was said to be hard and firm, black and with a luster like pitch.

Other brown coal from Angelina county had the following composition:

Moisture	 	36.37
Ash	 •	13.46
	1	00.00

But little is known of the iron ore deposits in this county, or of the oil and natural gas.

ARANSAS COUNTY.

Location-Southeast Texas; borders on the Gulf of Mexico.

County seat—Rockport; population, 1,382; elev. 6.

Area, square miles, 295.

Population, 2,106.

Railroads, 2.

Miles of railroad, 10.77.

Assessed valuation of property of all kinds, \$2,893,718.

Mineral resources-Clays; gravel.

The mineral resources of Aransas county have not been investigated, but as it lies wholly within the Gulf Coastal Plain, it may contain both petroleum and natural gas.

ARCHER COUNTY.

Location-North Texas.

County seat—Archer City; population, 825; elev. 1,085.

Area, square miles, 960.

Population, 6,525.

Railroads, 4.

Miles of railroad, 75.17.

Assessed valuation of property of all kinds, \$6,869,114.

Mineral resources—Clays; copper ore; petroleum; sandstone; gravel.

No large oil wells have been brought in in Archer county, but the geological conditions are such as to warrant further drilling.

The Permian copper ores occur in many places throughout the county, especially at the old Isbell property, north of Archer City. Some of these ores, especially the nodular variety of chalcocite, are rich in copper, running as high as 50 to 60 per cent. Except in the way of sporadic and small shipments, these ores have not been utilized. Whether or no they can be profitably worked remains to be seen, but it would appear that when copper ore of less than one per cent in copper is now being mined, by steam shovel, in New Mexico, the Archer county deposits should be worthy of close investigation. The high content in copper would allow of the mining and handling of a heavy overburden, and the specific gravity of the ore is such as to render concentration a comparatively easy problem.

ARMSTRONG COUNTY.

Location—Southern part of Panhandle.

County seat — Claude; population, 692; elev. 3,405; lat. 35° 8'; long. 101° 23'; mag. dec. 10° 58'.

Area, square miles, 870.

Population, 2,682.

Railroads, 1.

Miles of railroad, 32.72.

Assessed valuation of property of all kinds, \$4,558,141.

Mineral resources—Clays; gypsum; gravel.

The mineral resources of Armstrong county have not been investigated.

ATASCOSA COUNTY.

Location-South Texas.

County seat—Pleasanton; population, 420; elev. 365.

Area, square miles, 1,182.

Population, 10,004.

Railroads, 3.

Miles of railroad, 79.83.

Assessed valuation of property of all kinds, \$10,431,750.

Mineral resources—Clays; lignite; sandstone; gravel; natural gas.

The clays of Atascosa county have not been investigated.

The average composition of the lignite that has been mined at Poteet is as follows:

		Per cent.
Moisture		27.94
Volatile combustib	le matter	24.67
Fixed carbon		37.13
$\mathbf{Ash} \ \dots \dots \dots$		
		100.00
Sulphur British thermal un		

From some of the artesian wells that have been drilled in the county there is sufficient natural gas obtained to be used locally for heating, etc.

AUSTIN COUNTY.

Location—Southeast Texas; west of Brazos river.

County seat — Bellville; population, 1,076; elev. 265; lat. 29° 56'; long. 96° 13'; mag. dec. 8° 11'.

Area, square miles, 712.

Population, 17,699.

Railroads, 4.

Miles of railroad, 90.52.

Assessed valuation of property of all kinds, \$9,459,333.

Mineral resources-Clays; gravel.

The mineral resources of Austin county have not been investigated.

BAILEY COUNTY (Unorganized).

Location-West Texas; borders on New Mexico.

County seat-

Area, square miles, 1,000.

Population, 312.

Railroads, 1.

Miles of railroad, 19.68.

Assessed valuation of property of all kinds, \$299,958.

Mineral resources—Practically unknown.

BANDERA COUNTY.

Location—Southwest of center.

County seat — Bandera; population, 419; elev. 1,258; lat. 29° 44′; long. 99° 5′; mag. dec. 8° 45′.

Area, square miles, 822.

Population, 4,921 (inclusive of 184 sq. ms. now in Real County, created in 1913).

Railroads, none.

Assessed valuation of property of all kinds, \$2,785,235 (inclusive of 184 sq. ms. now in Real county).

Mineral resources—Clays; limestone; kaolin, reported; gravel.

The mineral resources of Bandera county have not been investigated.

BASTROP COUNTY.

Location—Southeast of center.

County seat—Bastrop; population, 1,709; elev. 368; lat. 30° 6'; long. 97° 18'; mag. dec. 8° 40'.

Area, square miles, 881.

Population, 25,344.

Railroads, 2.

Miles of railroad, 94.63.

Assessed valuation of property of all kinds, \$13,642,198. Mineral resources—Clays; lignite; gravel; petroleum?

The clays of Bastrop county have long been famous for their excellent qualities, and they are extensively used for the manufacture of all kinds of brick, including fire brick. Some of the largest brick plants in the State are located in this county, and place on the market more than forty varieties of products. Through the courtesy of the Elgin-Butler Brick and Tile Company, the Elgin Standard Brick Company, and the Texas Fire Brick Company, in supplying the brick for the tests, the Bureau of Economic Geology examined a considerable number of brick made in Bastrop county.

The examinations included, among other items, the determination of the weight per cubic foot deduced (from the specific gravity), the per cent of cells by volume, the volume of cells in 100 parts by weight, the percentage weight of water absorbed and the crushing strain in pounds per square inch. The analyses were made by S. H. Worrell and J. E. Stullken. The following table gives the results obtained.

Tests on Brick Made in Bastrop County.

	. —							
	Marks		Anal.		Per ct.	cells in	Lbs. of water absorb-	Crush- ed at
Color.	Shade	Quality		per cu. ft., lbs.	cells by vol.	by wt.	ed per cu. ft.	sq. in.
	Elgin-	Butler B	rick & T	ile Com	nany			
Brown	485	1	1211			11.62	14.03	4,844
Buff	170	ī	1210					3,866
Buff spot	220	î	1212	121.16				
Buff spot	210	ī	1232	118.50	25.70			
Gray	425		1216		22.19		13.85	
Gray	440	1	1217		24.28			
Gray	485	l ī	1218	117.90	24.69			
Gray	481	l <u>ī</u>	1241	115.80	26.13			
Gray	490	1	1242	124.60	19.66			
Gray buff	105B	ī	1434	119.30	24.35			
Gray spot	218	1	1214	115.16	27.21	14.48	16.67	
Gray spot	215	1	1437		22.12			
Dark gray	430	1	1433	119.60	23.12			5,496
Light gray	415	1	1435	120.40	23.55		14.70	
Light gray	410	1	1436	117.80	27.45			
iron speckled	120	1	1239	126.10	17.08		10.60	
Manganese speckled	225	1	1240	125.30	18.93	9.43	11.81	5,787
Iron spot	125	1	1430		17.82		11.12	5,390
Iron spot	115	1	1431	119.00	24.25	12.72	15.13	
White mottled	237	. 1	1215	127.77	14.71	7.19	9.18	4,840
	Elgir	Standa	ı ırd Brick	Compa	ny.	}		
Buff speck	360	1 1	1364	122,20	21.58	11.02	13.46	5,096
Buff speck	326	1	1365	118,70	23.90	12.57	14.92	5,479
Gray	640	1	1366	123.30	20.70	10.48	13.92	6,321

The quality of the brick made in Bastrop county is further illustrated by samples received from the Texas Fire Brick Company, Dallas, with plant at Lasher.

	Buff Manga- nese, Shade 460	Buff, Shade 77
Weight of a cu. ft., pounds	$egin{array}{llll} & & 23.04 \ & & 12.12 \ & & & 14.37 \end{array}$	168.72 26.26 9.72 16.39 3,850

The average composition of two samples of fire-clay from near Elgin is as follows:

		P	er cent.
Silica			. 68.45
Alumina			. 21.10
Oxide of iron			. 1.10
Lime		. : .	. 1.40
Magnesia			. Trace
Soda			. 1.25
Potash			
Titanic acid			. 0.05
Water	• •		. 6.75
			100.10
Total fluxes			. 3.75

The fusion point of these clays was about 3,000 degrees F.

A pottery clay from near McDade had the following composition:

*.		Per cent.
Silica		74.30
Alumina		16.00
Oxide of iron		1.40
Lime		Trace
Magnesia		None
Soda		0.60
Potash		0.50
Titanic acid	. 	0.50
Water	_?	5.07
		99.60
Total fluxes		

The composition of a sample of red and brown burning clay for common and pressed brick, from Elgin, was as follows:

												P	er	cent.
Silica	 ٠.										١			70.40
Alumina	 													17.30
Oxide of iron														

Lime															P	e:	cent
Lime																	1.00
Magnesia .					,												Trace
Soda	. ,																2.20
Potash																	0.6
Titanic aci	d																0.8
Water	٠.						•										5.4
																-	99.5
Total fluxe	8	_	 _	_		_	_	•	_	_							5.60

This clay became viscous at a temperature of 2,498 deg. F. A sandy brick clay from Elgin had the following composition:

	Per	cent.
Silica		72.70
Alumina		9.50
Oxide of iron		4.10
Lime		4.10
Magnesia		0.80
Soda		Trace
Potash		2.40
Titanic acid		0.60
Water	• • •	4.50
		99.10
Total fluxes		11.04

This clay became viscous at a temperature of 2,390 degrees F. The lignite of Bastrop county has been mined extensively by the Independence Mining Company, at Phelan. The average composition of this material is as follows:

						r cent.
Moisture	 		٠.			30.98
Volatile combustible						
Fixed carbon	 					27.67
Ash	 			,		6.42
					-	
						100.00

 Sulphur
 0.60

 British thermal units per lb.
 7,597

The Calvin Coal Company also mines lignite in this county, but no analysis can be given. The same is true of the Standard Company.

BAYLOR COUNTY.

Location-North Texas.

County seat—Seymour; population, 2,029; elev. 1,290; lat. 33° 36'; long. 99° 16'; mag. dec. 9° 55'.

Area, square miles, 957.

Population, 8,411.

Railroads, 3.

Miles of railroad, 57.73.

Assessed valuation of property of all kinds, \$6,249,391.

Mineral resources—Copper ore; gypsum; sandstone; gravel.

Permian copper ores occur in Baylor county, but they have not been developed.

BEE COUNTY.

Location-Southeast Texas.

County seat — Beeville; population, 3,269; elev. 214; lat. 28° 23'; long. 97° 46'; mag. dec. 8° 55'

Area, square miles, 875.

Population, 12,090.

Railroads, 2.

Miles of railroad, 62.45.

Assessed valuation of property of all kinds, \$8,461,725.

Mineral resources—Clays; gravel.

The mineral resources of Bee county have not been investigated.

BELL COUNTY.

Location—Central Texas.

County seat—Belton; population, 4,164; elev. 511; lat. 31° 4′; long. 97° 28′; mag. dec. 8° 11′.

Area, square miles, 1,091.

Population, 49,186.

Railroads, 3.

Miles of railroad, 98.

Assessed valuation of property of all kinds, \$29,669,830.

Mineral resources—Clays; limestone; mineral waters; gravel; petroleum; natural gas.

The clays of Bell county are utilized in the manufacture of brick by the Belton Brick Company, Belton. They are classed as calcareous clays, and the average composition of two samples was as follows:

											cent.
Silica	 							:			64.80
Alumina	 										3.63
Oxide of iron.											
Lime	 		 			•					13.16
Magnesia											
Soda	 		 								0.77

			Pe	r cent.
Potash		 	 	0.45
Titanic aci	id .	 	 	0.45
Water		 [.]	 	2.60
Carbonic a	cid	 • • • •	 	11.05
				99.72
Total flux	- Da			16 86

These clays do not burn steel hard at a temperature of 2,246 degrees F.

We have examined one sample of brick from the Belton Brick Company, with the following results:

, , <u> </u>	
Weight in lbs. per cu. foot	102.60
Per cent. of cells by volume	28.92
Volume of cells in 100 parts by weight	17.60
Pounds of water absorbed per cu. ft	18.25
Crushed at the ner square in	3.008

BEXAR COUNTY.

Location—South of center.

County seat—San Antonio; population (1913-14), 115,065; elev. 656; lat. 29° 29'; long. 98° 32'; mag. dec. 9° 35'.

Area, square miles, 1,268.

Population, 119,676.

Railroads, 6.

Miles of railroad, 185.69.

Assessed valuation of property of all kinds, \$105,898,862.

Mineral resources — Cement materials; clays; lignite; limestone; natural gas; petroleum; phosphatic pebbles; sandstone; mineral waters; infusorial earth; gravel.

The cement making materials in Bexar county (limestone and shale) are utilized by the San Antonio Portland Cement Company, whose plant is on the International & Great Northern Railway, about five miles north of San Antonio.

Analyses of the crude materials are as follows:

son of the orace material	S GIC GS I	OIIO W S .
Ľ	imestone	\mathbf{Shale}
	Per cent.	Per cent.
Silica	7.80	55.30
Alumina	3.45	13.56
Oxide of iron	1.35	4.50
Lime	46.64	9.48
Magnesia	None	None
Carbonic acid	36.65	7.45
Loss on ignition	3.35	8.85
**.	99.24	99.14

The lignite in Bexar county is not now utilized.

5-Min.

Of limestones there are many varieties in Bexar county, from a soft, somewhat friable and chalk-like stone, to material which closely resembles lithographic stone. By far the greater development of the limestones is along the line of the San Antonio & Aransas Pass Railway northwest of San Antonio and around Leon Springs.

Analyses of some of these limestones are as follows:

	Leon Sprgs.	Near Helotes.	Balcones, used in Federal Bldg. San Antonio.
Silica		0.38	1.40
Alumina		1.55	0.24
Oxide of iron		0.45	0.76
Lime		52.43	51.92
Magnesia		0.25	Trace
Carbonic acid		41.20	41.36
Loss on ignition		2.54	2.92
•	99.94	98.80	98.60

The stone from the Balcones, used in the construction of the Federal Building in San Antonio, had the following physical qualities:

Weight of a cubic foot, pounds	.133.00
Per cent. of cells by volume	
Volume of cells in 100 parts by wt	. 8.96
Pounds of water absorbed per cu. ft	. 11.91
Crushed at, lbs. per square inch	. 2,425

A sample of limestone received from the San Antonio Lime Company and representing material in a quarry 14 miles north of San Antonio, and on the S. A. & A. P. Railway, had the following composition:

		Per cent.
Silica		0.70
Alumina		
Oxide of iron	<i></i>	0.72
Lime		
Carbonic acid		41.90
Loss on ignition		2.10
		100.00

The physical qualities of this stone were as follows:

Weight of a cubic foot, pounds	167.60
Per cent. of cells by volume	0.20
Volume of cells in 100 parts by weight	0.07
Pounds of water absorbed per cu. ft	0.11
Crushed at pounds per square inch	6,666

From Ling & Hughes, San Antonio, we received a sample of limestone from Bexar county which had the following composition:

	\mathbf{Per}	cent .
Silica		4.60
Alumina and oxide of iron		
Lime		51.12
Magnesia		
Carbonic acid		39.88
	_	
		99.50

This stone had the following physical properties:

Weight per cubic foot, pounds	128.25
Pounds of water absorbed per cubic foot	
Crushed at pounds per square inch	4.400

The fire-clays are represented by one analysis of the clay from Adkins, as follows:

•	Рe	r cent.
Silica		69.70
Alumina		21.50
Oxide of iron		
Lime		Trace
Magnesia		0.50
Soda		1.00
Potash		0.30
Titanic acid		0.12
Water		7.10
		100.62
Total fluxes		2.32
Fusion point, deg. F		3,038

The pottery clays are represented by two analyses, as follows:

	Myer Pottery, Strumberg.	2½ mi. south of Elmendorf.
	Per cent.	Per cent.
Silica	65.64	68.30
Alumina		20.10
Oxide of iron	1.44	1.00
Lime	1.70	Trace
Magnesia		2.40
Soda		0.60
Potash	1.00	Trace
Titanic acid		1.20
Water		6.60
	98.95	100.20
Total fluxes		4.00
		3.038
Fusion point, deg. F	0,000	3,038

Bexar county clays of easy fusibility are represented by the following analyses of two samples from San Antonio:

	1	2
Silica	38.08	57.04
Alumina	11.36	11.85
Oxide of iron	2.60	3.02
Lime	23.70	9.56
Magnesia	Trace	1.20
Soda	1.60	2.01
Potash	0.58	0.75
Titanic acid	0.70	1.13
Water	3.06	4.00
Carbonic acid	18.80	8.00
·	100.48	98.56
Total fluxes	28.48	16.54

These clays began to be viscous at a temperature of 2,174 deg. F.

The buff-burning, semi-refractory clays are represented by an analysis of a sample from Adkins, as follows:

Silica			Per	r cent.
Silica			, <i></i>	68.70
Alumina				15.90
Oxide of iron				3.30
Lime				3.10
Magnesia		. .		0.50
Soda				0.30
Potash				Trace
Titanic acid		· . .	. 	1.40
Water				5.90
TT (7 01				99.10
Total fluxes				7.20
Becomes viscous	at, deg. 1	F		2.570

The red and brown-burning clays for common and pressed brick are represented by an analysis of a sample from San Antonio, as follows:

	Pe	r cent.
Silica		
Alumina		
Oxide of iron		
Lime		
Magnesia		
Soda		
Potash		
Titanic acid		1.14
Water		
Carbonic acid		3.25

a	cent.
Sulphuric acid	
Total fluxes	98.56
Becomes viscous at about, deg. F	

The brick made in Bexar county, at Elmendorf, by the Star Clay Products Company, is represented by sample of stiff mud Star fire-brick, the physical tests of which are as follows:

Weight of a cubic foot, pounds	126.7
Per cent. of cells by volume	
Volume of cells in 100 parts by weight	8.67
Pounds of water absorbed per cu. ft	10.98
Crushed at, pounds per square inch	

A sample of dry press fire-brick from the same company had the following physical properties:

Weight of a cubic foot, pounds	115.5
Per cent. of cells by volume	25.94
Volume of cells in 100 parts by weight	14.02
Pounds of water absorbed per cu. ft	16.18
Crushed at, pounds per square inch	2.685

On Leon creek, about 7 miles west of San Antonio, on the Castroville road, there is a heavy deposit of phosphatic green sand of the following composition:

Pe	
Silica	35.18
Alumina	5.30
Oxide of iron	17.25
Lime	16.00
Magnesia	Trace
Soda	1.39
Potash	1.69
Carbonic acid	8.00
Loss on ignition	10.10
Phosphoric acid	3.30
	98.21

This deposit contains rounded phosphatic pebbles, from $\frac{1}{8}$ -inch to $\frac{1}{4}$ -inch in diameter, of the following composition:

· · · · · · · · · · · · · · · · · · ·	
Silica	. 7.50
Alumina	. 31.03
Oxide of iron	. 4.58
Lime	. 18.08
Carbonic acid	. 4.60
Phosphoric acid	. 18.19
Loss on ignition	. 12.60

98.34

The larger pebbles are not abundant. For the most part the pebbles are very small, less than 1-20 inch in diameter.

An examination of 10 feet of this phosphatic green sand foot by foot gave the following results, from above downwards:

	Phosphoric acid.
First foot	
Second foot	• • • • • • • • • • • • • • • • • • • •
Third foot	
Fourth foot	
Fifth foot	
Sixth foot	
Seventh foot	
Eighth foot	\dots 2.60
Ninth foot	
Tenth foot	3.97
Average	3.30

The total thickness of the deposit is about 20 feet, and it sets in at from 4 to 6 feet below the surface.

Taking the deposit as a whole, it carries enough lime, potash and phosphoric acid to make it a good fertilizing agent. The rock is soft and easily pulverized. It could be finely ground and used with distinct advantage on many farm lands in south Texas, especially those in the vicinity of San Antonio. With the exception of some "stray" phosphate in Fayette county, the exact locality of which is somewhat uncertain, the phosphatic pebbles from Leon creek carry considerably more phosphoric acid than any other known deposit in the State.

There are no commercial developments of natural gas in Bexar county, although the possibilities along the San Antonio and Medina rivers are such as to warrant much more extensive and systematic drilling than has heretofore been carried on. This is especially true of the country along the Medina river from near its junction with the San Antonio river to Somerset. Good rock-pressures have been observed in some wells bored along this line.

The proximity of this district, 15 to 25 miles, to the largest city in Texas would of itself appear to justify careful investigations of the situation with respect to both natural gas and petroleum. The oil wells near Somerset now supply crude oil for a refinery in San Antonio.

The Dullnig wells, which formerly yielded small amounts of

a good lubricating oil, are not in production now. At one time that oil brought \$5.00 a barrel, an attractive price for crude oil.

The quality of the sand-lime brick made at San Antonio is represented by the following tests made on a sample received from the manufacturers:

Weight per cubic foot, pounds116.1
Per cent. of cells by volume27.44
Volume of cells in 100 parts by weight14.75
Pounds of water absorbed per cubic foot. 17.12
Crushed at, pounds per square inch2,115

The composition of Dullnig's chalybeate water is as follows:

	Grains per U. S
	Gallon.
Magnesium sulphate	$\dots 56.213$
Sodium chloride	
Ferrous bi-carbonate	\dots 3.021
Calcium bi-carbonate	44.374
Calcium sulphate	7,960
Strontium bi-carbonate	Trace
Sodium sulphate	7.190
Ammonium nitrate	
Magnesium phosphate	Trace
Organic matter	None
	${144.228}$

Analysis by James Kennedy, School of Pharmacy, University of Texas.

The composition of the mineral water from San José (Terrell Hot Well) is as follows:

Grains per U. S.
Gallon.
Silica 1.336
Alumina 0.088
Iron bicarbonate 0.076
Calcium sulphate
Calcium bicarbonate 0.612
Calcium chloride
Calcium phosphate 0.326
Sodium bromide 0.464
Sodium biborate 0.326
Sodium iodide 0.352
Sodium sulphate
Potassium sulphate 4.326
Magnesium chloride 26.304
Lithium 0.222
Strontium sulphate 0.104
Dirontium Burphate
230.404
Carbonic acid gas40.78 cu. in. per gallon
Hydrogen sulphide gas 9.59 cu. in. per gallon

Analysis by W. A. Noyes, Rose Polytechnic Institute, Terre Haute, Indiana.

BLANCO COUNTY.

Location—South of center.

County seat-Johnson City; population, 344; elev. 1,200.

Area, square miles, 762.

Population, 4,311.

Railroads, none.

Assessed valuation of property of all kinds, \$3,113,944.

Mineral resources—Bat guano; clays; limestone; sandstone; gravel.

Bat guano occurs in many limestone caves and caverns in Blanco county. It is of variable composition. The best bat guano contains from 10 to 12 per cent of ammonia, weighs from 40 to 45 pounds per cubic foot and is worth about \$2.00 per unit of ammonia, delivered at fertilizer factories.

BORDEN COUNTY.

Location-West Texas; southeast of Staked Plains.

County seat—Gail; population, 275.

Area, square miles, 892.

Population, 1,386.

Railroads, none.

Assessed valuation of property of all kinds, \$1,526,540.

Mineral resources—Unknown.

BOSQUE COUNTY.

Location-Northeast of center.

County seat—Meridian; population, 718; elev. 791; lat. 31° 57′; long. 97° 40′; mag. dec. 8°32′.

Area, square miles, 972.

Population, 19,013.

Railroads, 2.

Miles of railroad, 78.56.

Assessed valuation of property of all kinds, \$11,978,670.

Mineral resources—Clays; limestone; gravel; petroleum; natural gas.

The clays of Bosque county have not been investigated.

We received from Mr. Bart Moore Jr., of the McCall-Moore

Engineering Company, Waco, a sample of limestone from 1½ miles west of Iredell, which had the following composition:

	Per	cent.
Silica		6.10
Alumina		1.88
Oxide of iron		0.78
Lime		48.69
Magnesia		None
Carbonic acid		
Loss on ignition		
	. :	98.95

This stone had the following physical qualities:

Weight per cubic foot, pounds157.1
Per cent. of cells by volume 5.24
Volume of cells in 100 parts by weight 2.08
Pounds of water absorbed per cu. ft 3.26
Crushed at, pounds per square inch3.750

BOWIE COUNTY.

Location—Northeast corner; borders on Arkansas and Louisiana.

County seat—Boston; population, 140; elev.—; lat. 33° 27'; long. 94° 24'; mag. dec. 7° 48' (1912).

Area, square miles, 904.

Population, 34,827.

Railroads, 5.

Miles of railroad, 118.51.

Assessed valuation of property of all kinds, \$15,691,768.

Mineral resources-Clays; lignite; mineral waters; gravel.

The fire-clays are represented by an analysis of a sample from New Boston, as follows:

	Per cent.
Silica	73.68
Alumina	17.01
Oxide of iron	
Lime	
Magnesia	1.36
Soda	0.15
Potash	Trace
Titanic acid	1.57
Water	6.00
	100.35
Total fluxes	2.09
Point of fusion, about 3,200	T seh 6

The pottery clays are represented by an analysis of a sample from Texarkana, as follows:

	Per cent.
Silica	71.20
Alumina	18.00
Oxide of iron	0.60
Lime	
Magnesia	
Soda	
Potash	0.90
Titanic acid	
Water	5.80
	00.00
Total fluxes	3.80
Point of fusion3,03	8 deg. F.

The red and brown-burning clays for common and pressed brick are represented by an analysis of a sample from New Boston, as follows:

Alumina 1 Oxide of iron 1 Lime Magnesia Soda Potash	ent. 6.01 8.82 6.38 0.55 1.88 0.08 0.16 0.95
Water	$\frac{4.80}{9.58}$ $\frac{9.58}{9.00}$

The sandy brick clays are represented by an analysis of a sample from Texarkana, as follows:

	$-\mathbf{P}$	er cent.
Silica	, 	88.71
Alumina		4.88
Oxide of iron		
Lime		0.30
Magnesia		0.97
Soda		Trace
Potash		
Titanic acid		0.90
Water		. 2.28
		100.04
Total fluxes		9 07
Total fluxes		. 3.41

The various clays are utilized on a large scale, especially for common brick, tiles, hollowware, etc.

The lignites are not now utilized. The average of three analyses of lignite from the county is as follows:

	Per	cent.
Moisture		12.39
Volatile combustible matter		52.82
Fixed carbon		
Ash		8.43
	1	00.00
Sulphur		0.67
British thermal units per pound (1)	1	0,370

The thickness of a seam of lignite near New Boston is 12 feet. A notable circumstance in connection with the lignites of this county is that one analysis showed 1.45 per cent of ash, 76.41 per cent of volatile combustible matter, and 10.62 per cent of fixed carbon.

BRAZORIA COUNTY.

Location—Southeast Texas; borders on the Gulf of Mexico. County seat—Angleton; population, 898; elev. 31; lat. 29° 9'; long. 95° 25'; mag. dec. 7° 54'.

Area, square miles, 1,438.

Population, 13,299.

Railroads, 6.

Miles of railroad, 141.96.

Assessed valuation of property of all kinds, \$18,346,755.

Mineral resources—Clays; petroleum; sulphur; gravel.

The clays have not been investigated. There are no producing petroleum or natural gas wells in the county, although it is reasonable to suppose that both petroleum and natural gas will be found there in commercial quantities.

A large establishment for the production of sulphur from beds lying a thousand feet below the surface has been built at Freeport, mouth of the Brazos river, and the capacity is now about 120,000 tons a year.

There is reason to believe that this is a very large deposit of sulphur. A costly plant was built after thorough investigations over a number of years. The method of extraction is similar to that used at Sulphur, Louisiana, viz: by forcing superheated water through pipes into the deposit, suspending and

dissolving the sulphur and then pumping the material back and allowing the sulphur to deposit in open air bins. A pure sulphur is thus obtained, which is in steady demand for the manufacture of sulphuric acid, powder, sulphite for bleaching woodpulp, etc. The only two plants for producing sulphur in this manner are on the Gulf Coast, one at Sulphur, Louisiana, and the other at Freeport, Texas. The two together have an annual capacity of nearly 750,000 tons of sulphur.

BRAZOS COUNTY.

Location—Southeast of center; between the Brazos and the Navasota rivers.

County seat—Bryan; population, 4,132; elev. 367; lat. 30° 40′; long. 96° 21′; mag. dec. 8° 53′.

Area, square miles, 510.

Population, 18,919.

Railroads, 5.

Miles of railroad, 97.70.

Assessed valuation of property of all kinds, \$9,705,156.

Mineral resources—Clays; lignite; petroleum; sandstone; gravel.

The clays have not been fully investigated. A clay of easy fusibility occurs about 12 miles southeast of College Station. It had the following composition:

	P	er	cent.
Silica			68.56
Alumina			18.53
Oxide of iron			0.72
Lime			0.60
Magnesia			0.12
Soda			2.72
Potash			2.27
Titanic acid			0.43
Water			7.00
		1	00.95
Total fluxes			6.43

The lignite has not been developed. There are known deposits 15 miles north of Navasota, Grimes county, and these may extend into Brazos county. At this locality a well bored to a depth of 200 feet showed the following section:

Depth below	Thickness of
surface.	lignite,
Feet.	Feet.
12	2
34	2 1/2
38	2^{+-}
41	7
52	10
	
177	231/2

At the Black Shoals (Niblitz), northwestern part of the county, a seam of brown coal occurs in the bank of the Brazos river. It is shaly near the top, but is compact at the bottom and has a thickness of 12 to 14 feet. This deposit extends also into Burleson county.

There are no producing oil or gas wells in Brazos county.

BREWSTER COUNTY.

Location—Trans-Pecos Texas; borders on the Rio Grande. County seat—Alpine; population, 800; elev. 4,481; lat. 30° 22′; long. 103° 40′; mag. dec. 10° 18′.

Area, square miles, 5,006.

Population, 5,220.

Railroads, 2.

Miles of railroad, 115.75.

Assessed valuation of property of all kinds, \$8,439,882.

Mineral resources—Clays; coal; granite; lignite; lead; limestone; marble; opal; petroleum; quicksilver; silver ores; gold; manganese ores; topaz; zinc ores?

The mineral resources of Brewster county are quite varied, but at the present time the only mineral product worthy of mention is the quicksilver from the southern part. The quicksilver area lies about 90 miles south of Alpine and centers around Terlingua postoffice. The total value of the quicksilver produced in Brewster county up to the present time is more than \$2,200,000. There are no better quicksilver ores in the United States than are to be found in the southern part of this county.

The clays have not been developed, but at the time of the building of the quicksilver furnaces there was considerable activity at Harry Dryden's brickyard on Terlingua creek, in the southern part of the county. The brick made here was used for

building the quicksilver furnaces, and it had the following physical properties:

Weight of a cubic foot, pounds	101.3
Per cent. of cells by volume	
Volume of cells in 100 parts by weight	20.63
Pounds of water absorbed per cu. ft	20.89
Crushed at, pounds per square inch	1,496

The coal in this county occurs in the southern part and has been used as fuel under steam boilers at the quicksilver furnaces. Three analyses may be given as representing the coal in this district:

Moisture	$\begin{array}{c} 50.91 \\ 19.52 \end{array}$	Kimble Pits. 4.74 29.84 49.84 15.58	Chisos Pen. 1.16 32.79 44.53 21.52
Sulphur	100.00	100.00	100.00
	0.86	1.26	3.39
	8,432	11,887	11,950

An excellent granite not yet developed is found 2½ to 3 miles south of Altuda. Near Altuda, at the old Bird & Caruthers mine, good silver lead ore has been mined, but there are no operations at present. Ore from this place has yielded as high as \$100 a ton in lead and silver.

South of Marathon, about 16 miles, there is a quartz which carries in places about \$4 a ton in gold.

Five miles south of Marathon an excellent manganese ore has been found, but has not been developed.

Six miles southwest of Marathon, oil has been found at a depth of 90 feet, and it rose 14 feet in the well. The yield was 7 barrels in 14 hours. It is possible that the area around Marathon may be found to be oil-bearing in a commercial sense. The 1,200-foot well drilled 6 miles northwest of Marathon did not yield oil or gas in commercial amounts.

About 14 miles west of Alpine and nearly the same distance south of the Southern Pacific Railroad, there is a beautiful white marble with a faint bluish tinge and a black marble with white markings. The locality is known as the Jordan quarry. A sample of the white marble from this locality had a weight of 130.41 pounds per cubic foot and one cubic foot ab-

sorbed 5.42 ounces of water. This stone crushed at 3,784 pounds per square inch.

The black marble from this locality has a weight of 170.35 pounds per cubic foot. One cubic foot absorbed 4.36 ounces of water, and the stone crushed at 10,420 pounds per square inch. The chemical composition of these two stones is as follows:

Q.11	White marble.	
Silica	0.25	$\begin{array}{c} 3.40 \\ 0.50 \end{array}$
Oxide of iron		$\begin{array}{c} \textbf{0.25} \\ \textbf{54.00} \end{array}$
Carbonic acid	42.15	42.00
	99.25	100.66

Beautiful agates, amethysts and opals have been found in this county, together with many varieties of chalcedony.

East of Maverick Mountain, about 90 miles south of Alpine, in Section 120, Block G4, excellent samples of nitrate of potash have been found. The locality is interesting from a scientific standpoint, but does not appear to afford commercial possibilities. The nitrate occurs as thin veins in and encrustations on a porous gray sandstone of Cretaceous age.

Native alum has been found near Ash Spring, western foothills of the Chisos Mountains, but it does not seem to occur in commercial quantities.

BRISCOE COUNTY.

Location—South of the Panhandle.

County seat—Silverton; population, 525; elev. 3,300; lat. 34° 28'; long. 101° 23'; mag. dec. 10° 36'.

Area, square miles, 850.

Population, 2,162.

Railroads (1913), none.

Assessed valuation of property of all kinds, \$2,581,837.

Mineral resources—Unknown

BROOKS COUNTY.

Location-South Texas.

County seat—Falfurrias; population, 750; elev. 119.

Area, square miles, 1,964.

Population, no official statistics. County created in 1911.

Railroads, 1.

Miles of railroad, 3.20.

Assessed valuation of property of all kinds, \$3,395,202 (inclusive of 1,052 sq. ms. in Jim Hogg County).

Mineral resources-Unknown.

BROWN COUNTY.

Location-Northwest of center.

County seat—Brownwood; population, 6,967; elev. 1,342; lat. 31° 44′; long. 98° 59′; mag. dec. 9° 18′.

Area, square miles, 911.

Population, 22,935.

Railroads, 3.

Miles of railroad, 86.03.

Assessed valuation of property of all kinds, \$11,493,835.

Mineral resources—Clays; coal; limestone; natural gas; petroleum; sandstone; gravel.

The clays have not been investigated.

Lignite occurs in the county, but this has not been developed. A typical form of lignite, showing carbonized woody fiber, jet black in color, had the following composition:

Moisture Volatile combustible matter. Fixed carbon. Ash	• • •	44.91 35.83
Sulphur		1.77

Petroleum and natural gas occur in the northwest part of the county on Holloway Mountain, but no commercial wells have been brought in. The natural gas wells at Bangs supply the town of Brownwood with natural gas.

At the close of the year 1913 there were four good gas wells in Brown county.

BURLESON COUNTY.

Location—Southeast of center, west of the Brazos river. County seat—Caldwell; population, 1,476; elev. 406; lat. 30° 32'; long. 96° 46'; mag. dec. 8° 33'. Area, square miles, 677.

Population, 18,687.

Railroads, 2.

Miles of railroad, 68.60.

Assessed valuation of property of all kinds, \$8,175,100.

Mineral resources—Clays; fuller's earth; lignite; gravel.

The clays have not been investigated. Lignite is known to occur in the county, but there are no developed mines, nor can any analyses be given.

There are excellent deposits of fuller's earth in Burleson county, but they have not been utilized to any considerable extent.

A sample of fuller's earth from Somerville gave J. C. Blake (A. and M. College) a bleaching power of 152 as compared with English earth at 100, for bleaching refined cotton seed oil.

In a private communication from J. R. Lyon, Lyons, he reports that he had had many pits dug on a 100-acre tract and that the thickness of the fuller's earth varied from 4 to 30 feet. Tests of the earth made by Armour & Co., Fort Worth, were most favorable. Under date of November 7, 1914, R. A. Brantly, manager of the Fuller's Earth Company, Somerville, writes that they now have a representative visiting the principal cotton oil refiners in the United States with the purpose of acquainting them with the character of material that can be furnished. For bleaching vegetable oils this earth is said to be of excellent quality.

BURNET COUNTY.

Location-Near center (south).

County seat—Burnet; population, 981; elev. 1,294; lat. 30° 45'; long. 98° 13'; mag. dec. 9° 4'.

Area, square miles, 1,010.

Population, 10,765.

Railroads, 1.

Miles of railroad, 60,82.

Assessed valuation of property of all kinds, \$8,102,807.

Mineral resources — Asphalt rock; bat guano; copper ore; granite; graphite; lead ore; limestone; marble; sandstone; silver ore; zinc ore; granite gravel.

The mineral resources of Burnet county are quite varied, but 6-Min.

at the present time only the granite is utilized. There are many beautiful varieties of granite in the county: red, light gray, dark gray, and bluish gray. The great deposit of coarse red granite at Granite Mountain has been worked for a number of years, and supplied the stone used in the construction of the Capitol Building at Austin. The quality of the granite from Granite Mountain was determined as early as 1881 by Colonel D. W. Flagler, U. S. A., at the Rock Island Arsenal, Rock Island, Illinois. It was then ascertained that the crushing strength in pounds per square inch was 11,891; that it absorbed an inappreciable amount of water, and that the weight in pounds per cubic foot was 163.64. Since that time other analyses have been made of the Granite Mountain stone, and the weight of a cubic foot was found to be 165 pounds, with a crushing strain of 13,400 to 15,225 pounds per square inch.

A sample of coarse red granite from the old Hoover quarry, east side of the Colorado river, which was used in the construction of the Tarrant county court house, Fort Worth, had the following physical properties:

Crushed at, pounds per square inch....13,365

A sample of dark gray granite from a quarry northwest of Burnet had a weight of 182.83 pounds per cubic foot, and crushed at 10,880 pounds per square inch.

A sample of light gray granite from the same locality had a weight of 170.97 pounds per cubic foot, and crushed at 9,340 pounds per square inch.

Near Marble Falls there are large deposits of a granite gravel mixed with clay which makes an excellent road material.

A bituminous limestone occurs on and near Post Mountain, near the town of Burnet. It had the following composition:

•	Per cent.			
	From.		To.	
Asphaltene	1.90		7.76	
Petrolene	6.75		8.40	
Carbonate of lime	81.33		88.20	
Silica	1.50		4.16	
Sulphur	0.22		0.23	
Total bitumen	10.30		14.51	

There is to be found at this locality a bituminous limestone which corresponds closely in composition to the famous Seyssel

rock of southeast France. This material occurs also north of Burnet.

There is a thin seam of coal on a creek tributary to the Colorado river below Marble Falls. The composition of this coal is as follows:

					cent.
Moisture			 	i •	3.72
Volatile combustible matter					42.27
Fixed carbon					
Ash					14.60
				_	
					100.00

This coal does not seem to be of commercial importance.

Copper ore associated with lead and zinc is found in the Hooking Valley, about 9 miles west of Burnet, and has been partly developed.

The marble has not been developed, although there are some localities from which a stone of good quality can be obtained.

In many parts of the county and within easy reach of railroad facilities, there are large deposits of limestone of varying composition and qualities.

Many analyses and tests have been made in our laboratory, and the following eleven are selected as representative of the localities sampled:

		2	3	· 4	5	6	7	8	9	10	11
Silica	1.50	26.64	43.10	1.58	30.10						13.76
Alumina		0.43	5.65	0.65	4.58	2.01	2.05	1.26			1.91
Ox. iron	1.50	3.18	3.32	0.91	1.82	1.35	4.95	2.40	4.25	3.60	4.57
Lime	53.27	38.16	22.26	50.74	33.66	50.04	31.82	45.07	45.38	41.76	39.60
Magnesia			1.12	0.93			0.62		2.36	5.94	1.06
Sulph. acid				0.49	0.54		0.27	0.21			0.59
Carb. acid	41.85	30.40	19.10	40.66	28.10	39.74	26.32	35.30	38.70	39.38	29.50
Loss on ign	2.00	1.80	5.50	2.62	0.20	1.66	3.18	1.80	1.20	2.64	6.70
					—						
	100.12	100.60	100.05	98.58	99.00	99.64	98.41	98.76	99.71	100.36	97.69
Wt. per cu. ft. lbs Lbs. water absorbed	168	165	165	165	165	168	168	168	168	172	168
per cu. ft	0.26	0.67	1.67	1.50	0.72	0.52	0.44	0.31	0.76	0.42	1.58
Crushed at lbs. per										1	
sq. in	11,965	24,500	19,950	16,250	17,700	11,000	15,425	18,860	10,040	17,000	12,475

Explanation.

Widow Holland's ranch, about 1½ miles southeast of Burnet.
 East side of Amazon creek and about ¾ mile east of the A.
 & N. W. Ry. Heavy exposure.

 Backbone Ridge (Lacy's pasture), about ½ mile east of the A. & N. W. Ry., where the creek cuts through the ridge. About 1¼ miles north of railroad station at Marble Falls. Heavy exposure.

- 3. About a mile northeast of the A. & N. W. Ry. station at Marble Falls and ½ mile east of the High School Building. Heavy exposure.
- R. H. Hoover. About a mile south of Delaware water-tank, A. & N. W. Ry. Heavy exposure.
- Reed Yett. About ¼ mile north of the A. & N. W. Ry. and about 1½ miles east of Fairland. Heavy exposure.
- A. H. Edwards. About a mile east of the A. & N. W. Ry and about 1½ miles southeast of Fairland. Heavy exposure.
- Hoover's Point. A. & N. W. Ry., about 1¼ miles east of Colorado river bridge.
- 8. Ferguson place. Within half a mile of the A. & N. W. Ry., near Fairland. Heavy exposure. Said to be an excellent stone for bitulithic paving.
- 9. Same as 8, but sampled at a different place on the hill.
- Near Wood's sandstone quarry. Left hand creek. Heavy exposure. About a third of a mile from end of railroad to quarry.
- From cut on A. & N. W. Ry., a mile south of Delaware watertank. Exposure 4 feet.

The dolomites of Burnet County are also well developed within easy distances of the A. & N. W. Ry. The following five analyses and tests show the composition and qualities at the several localities noted:

	1	2	3	4	5
Silica	5.00	3.00	3.33	4.30	3,32
Alumina	2.54		5.43	8.48	12.88
Oxide of iron	1.96	1.80	3.18	1.82	2.88
Lime	30.32	28.98	29.38	27.03	28.62
Magnesia	15.14	20.40	14.32	14.99	10.81
Carbonic acid	40.47	43.70	42.00	41.70	40.00
Loss on ignition	4.49	2.46	3.00	2.60	0.58
	99.92	100.34	100.64	100.92	99.09
Weight per cu. ft. lbs	175	175	175	175	175
Lbs. water absorbed per	•				
cu. ft	0.29	0.59	0.35	1.03	0.46
Crushed at lbs. per sq. in.	26,250	18,450	25,000	18.650	26,000

Explanation.

- Bryant ranch, about ¾ mile down Hamilton creek below Holland spring, about 3 miles south of Burnet and ¾ mile east of the A. & N. W. Ry. Heavy exposure.
- Dave Holland. About a mile south of the A. & N. W. Ry. and about 1% miles southeast of Fairland. Heavy exposure.
- 3. R. H. Hoover. About ½ mile east of the A. & N. W. Ry. and about 6 miles east of Fairland. East side of Hamilton creek about % mile below numning station. Heavy exposure
- creek about ¾ mile below pumping station. Heavy exposure.

 4. E. O. Wengren. About ½ miles east of the A. & N. W. Ry. and about 6 miles east of Fairland. About ¼ mile up Hamilton creek from its junction with Delaware creek. Heavy exposure.
- Reed Yett. About ½ mile east of the A. & N. W. Ry. and about 5 miles east of Fairland, below bridge over Honey creek. Heavy exposure.

There is a deposit of lithographic stone in Burnet county about 4 miles north of the A. & N. W. Ry. bridge across the Colorado river. Some attempts have been made to develop this stone, but none of late. A good lithograph of the court house in Burnet was made on this stone. The locality is worth close attention as a good lithographic stone, large enough for the demands of the trade, is not abundant.

A deposit of graphite, foliated and amorphous, also occurs in the county, but has not been developed.

The largest bat guano cave in Texas is in the northwest part of the county, about 25 miles from Burnet, and about 14 miles There are probably from from the railroad at Lake Victor. 1,500 to 2,000 tons of bat guano in this cave. Bat guano varies a good deal in its content of ammonia, but the best of it contains from 10 to 12 per cent, and it is worth from \$20 to \$24 a ton, delivered at fertilizer factories. A hopeful man, with a turn for figures, once attempted to count the bats coming from this cave, but abandoned the attempt on the plea that his arithmetic had "gin out." For a description of the bat guano caves in Texas, reference is made to an article, by the writer, in "Mines and Minerals," Scranton, Pa., May, 1901. Near this cave, and on Silver creek, there is a sandstone containing galena (sulphide of lead), which has been worked to a small extent. Samples of this deposit gave 10 per cent of lead. Another outcrop of galena, in limestone, is found between Fairland and Marble Falls, a short distance east of the wagon road. A sample of this ore gave 12.5 per cent of lead. The lead ore in Burnet county carries but little silver and no gold.

A sandstone of good quality has been developed near Sandstone Spur, A. & N. W. Ry., at the Woods' quarry. The composition of the gray rock from this quarry is as follows:

	Per	cent.
Silica	'	65.60
Alumina	.	8.85
Oxide of iron		3.90
Lime	.	6.00
Magnesia		0.80
Soda		1.50
Potash		6.00
Carbonic acid		5.98
	·	
		98.63
Weight of a cubic foot, pounds	1	54.75
Pounds of water absorbed per cu, ft		9.4
Crushed at pounds per sq. inch		4,450

A ledge of gray sandstone that occurs at Hoover's Point, A. & N. W. Ry., about a mile from the Colorado river bridge, has the following composition:

$oldsymbol{r}$	er cent.
Silica	. 65.28
Alumina	
Oxide of iron	4.50
Lime	. 8.51
Magnesia	
Carbonic acid.	
Sulphuric acid	
	99.00

This stone crushed at 15,775 pounds per square inch. It weighed 153 lbs. per cubic foot and absorbed 3.74 lbs. of water per cu. ft.

CALDWELL COUNTY.

Location: Southeast of center.

County seat—Lockhart; population, 2,945; elev. 518; lat. 29° 54'; long. 97° 40' mag. dec. 8° 50' (1912).

Area, square miles, 530.

Population, 24,237.

Railroads, 3.

Miles of railroad, 55.49.

Assessed valuation of property of all kinds, \$11,981,144.

Mineral resources—Clays; iron ore; lignite; gravel.

The clays have not been investitgated. Lignite occurs near Prairie Lea and at Burdett Wells. A sample from this latter place had the following composition:

	Per	cent.
Moisture		8.15
Volatile combustible matter		29.06
Fixed carbon		39.73
Ash		23.08
Sulphur		1.33

On the West Fork there occurs a siliceous limestone of the following composition:

	Per	cent.
Silica		52.80
Alumina		5.87
Oxide of iron		1.53
Lime		18.19
Magnesia		0.64
Carbonic acid		12.10
Loss on ignition		5.00

96.13

CALLAHAN COUNTY.

Location-Northwest of center.

County seat—Baird; population, 1,710; elev. 1,708.

Area, square miles, 882.

Population, 12,973.

Railroads, 2.

Miles of railroad, 39.84.

Assessed valuation of property of all kinds, \$6,073,539.

Mineral resources—Limestone; sandstone; mineral waters; gravel.

From 1 to 2 miles west of Baird there is a limestone of the following average composition:

		cent.
Silica		1.77
Alumina		0.85
Oxide of iron		1.45
Lime		50.77
Magnesia		None
Carbonic acid		
Loss on ignition		3.63
	_	
		97.85

Two miles west of Baird there is a sandstone of the following composition:

		cent.
Silica		88.00
Alumina		
Oxide of iron		1.22
Lime		0.80
Magnesia		0.72
Carbonic acid		0.80
Sulphuric acid		1.65
Loss on ignition		1.90
	<u>~</u>	
		99 51

CALHOUN COUNTY.

Location—Southeast Texas; borders on the Gulf of Mexico. County seat—Port Lavaca; population, 1,699; elev. 22; lat. 28° 37'; long. 96° 37'; mag. dec. 8° 10'.

Area, square miles, 592.

Population, 3,635.

Railroads, 2.

Miles of railroad, 55.

Assessed valuation of property of all kinds, \$4,783,881. Mineral resources—Clays; salt; gravel.

The clays have not been investigated. There are no known salt deposits and such salt as may be obtained is derived from sea water.

CAMERON COUNTY.

Location—Extreme southern part; borders on the Gulf of Mexico and the Rio Grande.

County seat—Brownsville; population, 10,517; elev. 33.

Area, square miles, 671.

Population, 27,158 (inclusive of the portion now in Willacy county).

Railroads, 3.

Miles of railroad, 146.30.

Assessed valuation of property of all kinds, \$15,923,148.

Mineral resources-Clays; salt; gravel.

The mineral resources of this county have not been investigated.

CAMP COUNTY.

Location—Northeast Texas.

County seat—Pittsburg; population, 1,916; elev. 392; lat. 33° 0'; long. 94° 57'; mag. dec. 8° 7' (1911).

Area, square miles, 217.

Population, 9,551.

Railroads, 2.

Miles of railroad, 28.80.

Assessed valuation of property of all kinds, \$3,283,045.

Mineral resources-Clays; iron ore; lignite; gravel.

The mineral resources of this county have not been investigated, although it is known that good clays occur and also some deposits of lignite and iron ore.

CARSON COUNTY

Location—About the center of the Panhandle.

County seat—Panhandle; population, 521; elev. 3,451; lat. $35^{\circ}\ 21'$; long. $101^{\circ}\ 23'$; mag. dec. $11^{\circ}\ 1'$.

Area, square miles, 860.

Population, 2,127.

Railroads, 3.

Miles of railroad, 66.04.

Assessed valuation of property of all kinds, \$3,858,933.

Mineral resources—Unknown.

CASS COUNTY.

Location—Northeast Texas.

County seat—Linden; population, 675; elev. 270; lat. 32° 59'; long. 94° 22'; mag. dec. 7° 46' (1912).

Area, square miles, 945.

Population, 27,587.

Railroads, 7.

Miles of railroad, 107.87.

Assessed valuation of property of all kinds, \$6,783,135.

Mineral resources—Clays; iron ore; lignite; sandstone; gravel. The clays have not been investigated. Some years ago an attempt was made to develop the lignite, but there are no mines in the county now. In the northeastern part of the county lignite occurs at Alamo and Stone Coal Bluff. At this latter place it was said to be 12 feet thick and to have the following composition:

Moisti Volati Fixed Ash	le ca	co: rb	ml on	ou	st	ib	le	n	12	at	te	er					 	•	39.42 39.78
																		1	00.00

In respect of iron ore, however, the situation is most encouraging. During the last two or three years a great deal of prospecting and development work has been done and extensive deposits of good brown ore have been examined in such detail that the engineers were able to estimate probable tonnage. One company reports 30,000,000 tons, another a like amount, so that the question of available tonnage may now be regarded as settled within a reasonable degree of accuracy.

The ore is limonite (hydrated sesquioxide of iron), and occurs as a blanket formation near the tops of the hills and ridges. The over-burden is light, seldom reaching 6 feet, and consists of soil, sandy clays, etc., which are easily removed, either by plow and scraper or by the steam shovel. The thickness of the ore-bearing stratum varies from 2 to 5 feet. At some localities there is a considerable admixture of siderite (carbonate of iron) with the limonite.

Shipments of ore that had not been washed or calcined gave 57 per cent of iron. Just how much of this grade of ore is pres-

ent remains to be seen, but it is probable that a large tonnage of ore that will carry 50 per cent of iron, without washing or calcining, can be depended on.

If the entire "bank" of ore is mined, it will be necessary, for economical reasons, to treat it by one or another of the usual washing and jigging processes or by means of the Goltra process, which dispenses with the use of water. Plans for the erection of a washing and jigging plant of a capacity of 1,000 tons a day have been made, but the matter has not proceeded farther at this writing.

Preliminary estimates of the cost of mining and loading a ton of 50 per cent ore vary from 75 cents to 90 cents. The all-rail freight rate to tidewater, 300 miles, is \$1, so that it is possible to lay this ore down at Galveston Bay for \$1.75 to \$1.90 a ton,

The Gulf, Colorado & Santa Fe Railway has built at Port Bolivar an iron ore loading dock for handling from 3,000 to 4,000 tons of ore a day, the only one on the Atlantic or Gulf Coast south of Baltimore.

The iron ore area of Cass County appears to cover 350 square miles.

CASTRO COUNTY.

Location—Northwest Texas; south of the Panhandle. County seat—Dimmit; population, 140; elev. —; lat. 34° 33′; long. 102° 19′; mag. dec. 12° 33′.

Area, square miles, 870.

Population, 1,850.

Railroads, 1.

Miles of railroad, 2.48.

Assessed valuation of property of all kinds, \$3,289,433.

Mineral resources-Unknown.

CHAMBERS COUNTY.

Location—Southeast Texas; borders on the Gulf of Mexico. County seat—Anahuac; population, 300; elev. 23.

Area, square miles, 648.

Population, 4,234.

Railroads. 1.

Miles of railroad, 18.06.

Assessed valuation of property of all kinds, \$3,206,115.

Mineral resources—Clays; salt, from evaporation of sea water.

Near Cedar Bayou there is a sandy brick clay of the following composition:

	*
	Per cent
Silica	85.60
Alumina	6.71
Oxide of iron	
Lime	
Magnesia	0.43
Soda	0.65
Potash	0.50
Titanic acid	1.00
Water	3.10
	. ———
	99.43
Total fluxes	3.02

This clay does not burn steel hard at a temperature of 2,390 deg. F.

This clay is worked in yards around Cedar Bayou.

CHEROKEE COUNTY.

Location-East Texas; east of the Neches river.

County seat—Rusk; population, 1,558; elev. 489.

Area, square miles, 990.

Population, 29,038.

Railroads, 4.

Miles of railroad, 154.31.

Assessed valuation of property of all kinds, \$11,891,855.

Mineral resources—Clays; iron ore; lignite; sandstone; gravel.

The brick manufactured are represented by a sample, several years old, from the Rusk Brick Company. The results of the examination were as follows:

Weight per cubic foot, pounds	111.9
Per cent. of cells by volume	
Volume of cells in 100 parts by weight	16.24
Pounds of water absorbed, per cu. ft	18.17
Crushed, at pounds per square inch	1,498

The buff-burning semi-refractory clays for common and pressed brick are represented by the following analysis of a sample taken at Rusk:

	Per	cent.
Silica		82.45
Alumina		10.92
Oxide of iron		1.08
Lime	,	0.22
Magnesia		0.96
Soda		None
Potash		None
Titanic acid		1.00
Water	• • •	2.47
		99.10
Total fluxes		2.26

At a temperature of 2,890 deg. F. this clay showed a tendency to blister.

The sandy brick clays of this county are represented by an analysis of a sample taken at Rusk. The composition was as follows:

		Per cent.
Silica		72,76
Alumina		
Oxide of iron		3.81
Lime	. 	0.08
Magnesia		1.93
Soda		Trace
Potash		Trace
Titanic acid		1.43
Water		4.61
		99,08
Total fluxes		5.82

This clay becomes viscous at a temperature of 2,570 deg. F.

There is a good deal of lignite in Cherokee county, especially around Alto, but the seams are somewhat thin and no mining operations are conducted now. The following analysis gives the average composition of the better quality of lignite.

	P	\mathbf{er}	cent.
Moisture			7.57
Volatile combustible matter			48.62
Fixed carbon			37.52
Ash			6.29
Sulphur			2.13

The iron ores of Cherokee county have been utilized for more than 50 years in the manufacture of iron, but no pig iron has been produced in the county since 1909, when the State furnace at Rusk was closed down. With respect to the iron ore situation it can be said that excellent ores are to be found in many parts • of the county, especially on Gent Mountain, north of the railroad between Palestine and Rusk. So far as can now be ascertained, the ores used in the State furnace at Rusk contained from 43 to 45 per cent of iron.

What has been said with respect to the iron ores of Cass county applies also to the iron ores of Cherokee county, with the exception that no such close estimate of tonnage has been made in this county as was made in Cass county.

The total iron ore area in this county is probably not less than 350 to 400 square miles.

The old Alcalde (State) furnace at Rusk was built in 1883; and put in blast February 27, 1884. It was a charcoal furnace, 55×10 1-6 feet. It was rebuilt in 1896 and had an annual capacity of 10,000 tons of pig iron. It was changed to coke in 1903-04, capacity 23,000 tons, and discontinued in 1909. There was a cast-iron pipe foundry connected with the furnace. For several years all of the operations, including the mining of the ore and charcoal burning, were conducted with convict labor. The Star and Crescent furnace, near Rusk, was built in 1890-91, and put in blast November 26, 1891. It was a charcoal furnace, 65×11 feet, and had an annual capacity of 18,000 tons of pig iron. The charcoal was made at the furnace in large beehive ovens. This furnace has not been in operation for some years.

The Tassie Belle furnace, New Birmingham, near Rusk, was built in 1889-90. It was also a charcoal furnace, 60x11 feet, and had an annual capacity of 13,500 tons of pig iron. It has been idle for a number of years.

These three furnaces and the one at Jefferson, Marion county, are the only iron furnaces in Texas. It has been several years since any of them was operated.

The combined annual capacity of the four furnaces was 72,500 tons of pig iron.

CHILDRESS COUNTY.

Location—Northwest Texas; southeast of the Panhandle. County seat—Childress; population, 3,818; elev. 1,877; lat. 34° 26'; long. 100° 9'; mag. dec. 10° 45'.

Area, square miles, 660.

Population, 9,538.

Railroads, 1.

Miles of railroad, 28.

Assessed valuation of property of all kinds, \$5,275,765.

Mineral resources—Unknown.

CLAY COUNTY.

Location-North Texas; borders on the Red river.

County seat—Henrietta; population, 2,104; elev. 886; lat. 33° 49'; long. 98° ·12'; mag. dec. 9° 19'.

Area, square miles, 1,250.

Population, 17,043.

Railroads, 5.

Miles of railroad, 95.35.

Assessed valuation of property of all kinds, \$14,483,375.

Mineral resources—Asphalt rock; clays; natural gas; petroleum; gravel.

The asphalt rocks have not been investigated, but it is likely that they are bituminous sandstones of the same character as are found around St. Jo and Muenster, Montague county.

The clays of this county have not been investigated.

The petroleum and natural gas areas are in the northeast part of the county around Petrolia. Down to the close of the year 1913 the total value of the crude petroleum produced in what is known as the Henrietta-Petrolia field was \$996,741, representing 1,312,612 barrels of 42 gallons each.

The natural gas from Petrolia is piped to many north Texas cities and towns. Up to the 1st of November, 1913, the pipe line mileage of the Lone Star Gas Company from Clay county was 366, not inclusive of gathering lines. The total value of the natural gas produced in the year 1913 was \$2,073,823, the greater part of which is to be credited to Clay county. The total quantity of gas produced from wells in Texas in 1913 was 12,159,755,000 cubic feet, of an average price of 17.05 cents per thousand cubic feet. The greater part of this gas was from Clay county.

The natural gas from Clay county has a heating value of 700 British thermal units per cu. ft., due, almost entirely, to its content of marsh gas (methane). At the close of the year 1913 there were 33 gas wells in Clay County operated by four companies, viz: Lone Star Gas Company, Wichita Falls Gas

Company, Henrietta Oil and Gas Company, and Developers' Oil and Gas Company.

The geology of the oil and gas fields of Clay county have been investigated by J. A. Udden, geologist for the Bureau of Economic Geology. His report was issued in 1912 as Bulletin No. 246, "The Oil and Gas Fields of Wichita and Clay Counties," and may be obtained on application to the Bureau.

COCHRAN COUNTY (Unorganized).

Location—Northwest Texas; in Staked Plains; borders on New Mexico.

Area, square miles, 957.

Population, 65.

Railroads, none.

Assessed valuation of property of all kinds, \$527,936.

Mineral resources—Unknown.

COKE COUNTY.

Location—Northwest of center.

County seat—Robert Lee; population, 582; elev. —; lat. 31° 54′; long. 100° 29′; mag. dec. 10° 7′.

Area, square miles, 850.

Population, 6,412.

Railroads, 1.

Miles of railroad, 32.56.

Assessed valuation of property of all kinds, \$3,215,825.

Mineral resources—Asphalt rock; clays; gypsum; limestone; gravel.

The mineral resources have not been investigated.

COLEMAN COUNTY.

Location—Northwest of center.

County seat—Coleman; population, 3,046; elev. 1,690; lat. 31° 50′; long. 99° 25′; mag. dec. 9° 30′.

Area, square miles, 1,302.

Population, 22,618.

Railroads, 1.

Miles of railroad, 63.83.

Assessed valuation of property of all kinds, \$13,119,970.

Mineral resources—Clays; coal; glass sand; limestone; natural gas; petroleum; sandstone; gravel.

The clays have not been investigated.

The coal has been mined to a small extent, but there are no operations in the county at the present time. Analyses of the coal from near Rockwood, and from the old Silver Moon mine, northeast of Santa Anna, are as follows:

Moisture Volatile combustible matter Fixed carbon	3.07 33.05 39.10	Silver Moon. 2.36 38.55 43.88 15.21
Sulphur	100.00	100.00

The best analysis of the coal from near Rockwood gives, ash 9.79 and sulphur 2.22.

We have examined two samples of limestone from Coleman county, near Santa Anna, with the following results:

Silica Alumina Oxide of iron Lime Carbonic acid. Loss on ignition	41.60	Light red. 4.00 1.36 1.30 50.15 39.40 3.10
Weight per cubic foot, pounds	8.84	99.31 167.9 0.36 5,750

An extensive deposit of excellent glass sand occurs at Santa Anna. This material contains about 98.5 per cent of silica.

In the southeastern part of the county near Trickham both petroleum and natural gas have been found in commercial quantities, and it is thought that this field is of a promising character. The gas is now piped to Santa Anna.

The quality of the sand-lime brick made of material from Coleman county is represented by tests on a sample received from J. W. Parker & Sons, Santa Anna, as follows:

Weight of a cubic foot, lbs	108.5
Per cent. of cells by volume	33.29
Volume of cells in 100 parts by weight	19.16
Pounds of water absorbed per cu. ft	20.78
Crushed at, pounds per square inch	1,418

COLLIN COUNTY.

Location-North Texas.

County seat—McKinney; population, 4,714; elev. 592; lat. 33° 13'; long. 96° 36'; mag. dec. 8° 44'.

Area, square miles, 828.

Population, 49,021.

Railroads, 6.

Miles of railroad, 160.01.

Assessed valuation of property of all kinds, \$27,829,119.

Mineral resources-Clays; limestone; gravel.

The mineral resources have not been investigated.

COLLINGSWORTH COUNTY.

Location-Southeast corner of the Panhandle.

County seat—Wellington; population, 576; elev. 1,980; lat. 34° 51′; long, 100° 12′; mag. dec. 11° 6′.

Area, square miles, 900.

Population, 5,224.

Railroads, 1.

Miles of railroad, 15.52.

Assessed valuation of property of all kinds, \$3,898,642.

Mineral resources—Unknown.

COLORADO COUNTY.

Location—Southeast Texas; traversed by the Colorado river. County seat—Columbus; population, 1,824; elev. 201; lat. 29° 41′; long. 96° 32′; mag. dec. 8° 58′ (1912).

Area, square miles, 948.

Population, 18,897.

Railroads, 5.

Miles of railroad, 114.40.

Assessed valuation of property of all kinds, \$13,579,737.

Mineral resources-Clays; gravel.

For bleaching refined cotton seed oil a sample of fuller's earth from near Weimar gave J. C. Blake (A. and M. College) a power of 53 as compared with English earth at 100.

The mineral resources have not been fully investigated.

7-Min.

COMAL COUNTY.

Location-South of center.

County seat—New Braunfels; population, 3,165; elev. 637.

Area, square miles, 569.

Population, 8,434.

Railroads, 2.

Miles of railroad, 49.51.

Assessed valuation of property of all kinds, \$6,945,198.

Mineral resources—Bat guano; limestone; marble, gravel.

The Dittlinger Lime Company, New Braunfels, has been engaged for several years in the development of the limestones of Comal county. It has a large plant on the I. & G. N. Ry. a few miles south of New Braunfels. The following analyses represent the limestones from this locality:

•	1	2
Silica	0.21	0.16
Alumina		0.33
Oxide of iron		0.43
Lime		50.50
Magnesia	0.03	0.07
Carbonic acid	43.17	39.68
Loss on ignition	1.25	7.52
· · · · · · · · · · · · · · · · · · ·	100.05	98.69
Weight per cubic foot, pounds		163.7
Pounds of water absorbed per cu. ft		1.01 5,000

The composition of the white lime made by the Dittlinger Lime Company is as follows, average of three analyses:

	Per	cent.
Silica		0.33
Alumina		
Oxide of iron		0.41
Lime		93.83
Carbonic acid		0.80
Loss on ignition		3.50
_		

99.09

COMANCHE COUNTY.

Location-North of center.

County seat—Comanche; population, 2,756; elev. 1,358; lat. 31° 53′; long. 98° 36′; mag. dec. 9° 20′.

Area, square miles, 828.

Population, 27,186.

Railroads, 3.

Miles of railroad, 91.86.

Assessed valuation of property of all kinds, \$11,789,449.

Mineral resources—Clays; coal; limestone; glass sand; gravel.

The mineral resources of this county have not been investigated. The glass-sand has been used in the glass works at Wichita Falls.

The sand-lime brick made in Comanche county are represented by the tests made on a sample from the Comanche Brick Company, Comanche, as follows:

CONCIO COUNTY.

Location—West of center.

County seat — Paint Rock; population, 800; elev. 1,640; lat. 31° 30'; long. 99° 55'; mag. dec. 9° 58'.

Area, square miles, 941.

Population, 6,654.

Railroads, 3.

Miles of railroad, 33.22.

Assessed valuation of property of all kinds, \$4,471,897.

Mineral resources—Clays; pulverulent silica; gravel.

The mineral resources have not been investigated.

COOKE COUNTY.

Location—North Texas; borders on the Red river. County seat—Gainesville; population, 7,624; elev. 730; lat. 33° 37'; long. 97° 9'; mag, dec. 9° 18'.

Area, square miles, 1,000.

Population, 26,603.

Railroads, 3.

Miles of railroad, 59.62.

Assessed valuation of property of all kinds, \$16,471,897.

Mineral resources—Asphalt rock; clays; limestone; sandstone; petroleum; gravel.

The clays, limestones and sandstones of Cooke county have not been investigated. There are no producing oil wells in the county, but it is thought that portions of the county lie well within the oil-bearing formations of this part of the State.

The asphalt rocks occur in the western and southwestern part. They are bituminous sandstones of the following composition:

	From	To	
·	Per cent.	Per cent.	
Asphaltene	. trace	0.82	
Petrolene	$\dots 5.31$	14.17	
Carbonate of lime	. trace	0.50	
Silica	87.36	93.68	1
Sulphur	0.14	2.38	
Total bitumen	5.76	14.99	

The bricks manufactured are represented by a sample received from the Gainesville Pressed Brick Company, as follows:

Weight of a cubic foot, pounds	115.40
Per cent of cells by volume.	27.11
Per cent of cells by volume. Volume of cells in 100 parts by weight	14.66
Pounds of water absorbed per cu ft	16.91
Crushed at, pounds per §q. inch	2,784

CORYELL COUNTY.

Location-Near center.

County seat—Gatesville; population, 1,929; elev. 774; lat. $31^{\circ}\ 27'$; long. $97^{\circ}\ 45'$; mag. dec. $8^{\circ}\ 51'$.

Area, square miles, 1,115.

Population, 21,703.

Railrogds, 2.

Miles of railroad, 45.95.

Assessed valuation of property of all kinds, \$9.545.730.

Mineral resources—Clays; limestone; gravel.

The clays have not been investigated.

The composition of the limestones which were used as a flux in the blast furnace at Rusk, Cherokee county, was as follows:

Silica						_						٠			0.10
Oxide	of	iroi	1											٠	0.28
Carbon	nat	e of	lim	ıe.											99.60

Four samples of stone received from D. R. Boone, Lone Star Lime Works, Oglesby, had the following composition:

		2		4
Silica	$\begin{array}{c} 0.30 \\ 0.16 \end{array}$	$\begin{array}{c} \textbf{0.40} \\ \textbf{0.51} \end{array}$	$\begin{array}{c} 0.30 \\ 0.47 \end{array}$	$\begin{array}{c} \textbf{0.04} \\ \textbf{0.01} \end{array}$

Oxide of iron. Lime Magnesia Carbonic acid. Sulphuric acid. Loss on ignition	55.394%\ 0.11 42.61 n. d.	2 0.43 51.660 0.32 42.40 0.17 2.18	3 0.29 52.129 0.54 40.95 0.17 4.05	4 0.29 52.62 0.48 41.50 0.20 4.00	A PROPERTY.
Pounds of cu. et., lbs	6.51	150.60 4.59 3,778	124.60 13.75 444	144.70 5.51 2,356	

COTTLE COUNTY.

Location—Northwest Texas; south of the Panhandle. County seat—Paducal; population, 1,350; elev. 1,886; lat. 34° 2'; long. 100° 16'; may. dec. 10° 22'.

Area, square miles, 956.

Population, 4,396.

Railroads, 1.

Miles of railroad, 27.39.

Assessed valuation of property of all kinds, \$4,581,538.

Mineral resources-Unknown, with exception of copper ore and gypsum.

CRANE COUNTY (Unorganized).

Location-West Texas, east of the Pecos river.

County seat-

Area, square miles, 850.

Population, 331.

Railroads, 1.

Miles of railroad, 1.67.

Assessed valuation of property of all kinds, \$754,535.

Mineral resources—Salt; sulphate of soda.

CROCKETT COUNTY.

Location-West Texas, east of the Peges river.

County seat—Ozona; population, 427; elev. 2,500; lat. 30° 43'; long. 101° 13'; mag. dec. 9° 46'.

Area, square miles, 3,004.

Population, 1,296.

Railroads, 1.

Miles of railroad, 3.00.

Assessed valuation of property of all kinds, \$2,742,442. Mineral resources—Unknown, with exception of limestone.

CROSBY COUNTY.

Location—West Texas, east side of the Staked Plains. County seat—Crosbyton; population, 120; elev. 2058.

Area, square miles, 984.

Population, 1,765.

Railroads, 2.

Miles of railroad, 20.43.

Assessed valuation of property of all kinds, \$3,530,920.

Mineral resources—Unknown.

CULBERSON COUNTY.

Location—Trans-Pecos Texas; south of New Mexico.

County seat—Van Horn; population, 175; elev. 4,010. Area, square miles, 3.780.

Population.

Railroads, 2.

Miles of railroad, 67.1().

Assessed valuation of property of all kinds, \$4,617,206.

Mineral resources—Copper-silver ores; lead ores; limestone; marble; natural gas; petroleum; sandstone; sulphur; tungsten ores; turquois; zinc ores.

Copper-silver ores are found in the Sierra Diablo, north of Van Horn. The Hazel mine is the best known property in this district, and has yielded excellent ores. Some prospecting for ores of lead and tungsten has been carried on near the Marble Canyon, thirty miles north of Van Horn. The marble at Marble Canyon has not been developed. The same may be said as to natural gass and petroleum, which, from geological considerations, should be found in this county. At one time there was considerable activity in the zinc fields northeast of Boracho, but no producing mines were opened. Turquois occurs near Van Horn, and this locality has yielded some handsome stones.

The sulphur deposits of Culberson county occur in the eastern and central portions and are from ten to fifteen miles west of

the Pecos River Railroad. In this district native sulphur is found in a gypseous limestone and workable deposits often begin practically at the surface. Some years ago a plant for the extraction of sulphur was operated in this district, and it is reported that two carloads of pure sulphur were obtained and sent to St. Louis, but the plant was soon closed down. The sulphur deposits occur in Blocks 60, 61, 62, in Township 2, and in Blocks 108, 110, 111, 113, and 114 in Township 3. They are underlaid by gypsum and gypseous limestones which, in turn, are above oil and sulphurbearing shales resting on sandstones.

In Section 13, Block 113, Township 3, near Maverick Spring, a pit 41 feet deep gave the following:

	Feet.	Inches
Earth	. 1	
Gypseous sand	. 1	
White gypsum	. 3	
Gypsum, with 4 per cent. sulphur	. 1	6
Hard gypseous shale and gravel with 31 per cent. sul		
phur		6
Material carrying 44 per cent. sulphur	. 1	
Light brown gypseous material, with 30 per cent. sul	-	
phur	. 4	
Soft white material with 12.7 per cent sulphur	. 6	• • •
Black gravel and gypsum with 26.3 per cent. sulphur	. 8'	
Blue ore with 46 per cent. sulphur, streaky	. 11	
	41	ft.

The pit left off in the so-called "blue ore." From $6\frac{1}{2}$ feet below the surface to 41 feet there were $34\frac{1}{2}$ feet of material carrying from 12.7 per cent to 46 per cent of sulphur. Of this $34\frac{1}{2}$ feet, there were $28\frac{1}{2}$ feet that carried from 26 to 46 per cent.

The total thickness of the sulphur-bearing formation is not known.

No serious attempts to develop this sulphur district have beer made during the last fifteen years, although the situation is such as to merit a much closer examination than has yet been made. There are several localities where excellent sulphur sets in at the surface, and many of the old pits now show good material from the surface to a depth of 10 to 15 feet. The overburden generally is light, and there would be no serious difficulty in handling this and the sulphur ore by means of a steam (or gasoline) shovel.

There is no solid fuel in the district, and good drinking water

is not plentiful. But a crude oil that could be used in a Diesel engine is found at shallow depths a few miles from the sulphur area.

DALLAM COUNTY.

Location—Extreme northwest corner of Panhandle.

County seat—Dalhart; population, 2,580; elev. 3,985; lat. 36° 4'; long. 102° 31'; mag. dec. 12° 2'.

Area, square miles, 1,463.

Population, 4,001.

Railroads, 2.

Miles of railroad, 63.47.

Assessed valuation of property of all kinds, \$6,763,300.

Mineral resources-Unknown.

DALLAS COUNTY.

Location-North Texas.

County seat — Dallas; population (1913-14), 111,986; elev. 425; lat. 32° 45′; long. 96° 45′; mag. dec. 8° 44′ (1911).

Area, square miles, 900.

Population, 135,748.

Railroads, 10.

Miles of railroad, 301.29 (not including electric lines).

Assessed valuation of property of all kinds, \$129,550,350.

Mineral resources—Clays; gravel; limestone; cement materials. The clays, limestones and shales are used in the manufacture of Portland cement on a large scale in two establishments near Dallas, viz.: the Trinity Portland Cement Company and the Texas Portland Cement Company.

The red and brown burning clays are represented by the average of four analyses of samples from west Dallas, as follows:

	Per	cent.
Silica		55.20
Alumina		
Oxide of iron		
Lime		1.95
Magnesia		
Soda		0.61
Potash		0.67
Titanic acid		1.33
Water		6.24
Carbonic acid		1.88

]	P	er	cent.
Organic matter																						
Sulphuric acid.	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	0.90
																					_	00.50
																						00.00

These clays became steel hard at temperatures ranging from 1,922 to 2,102 degrees F.

The composition of the shale which is used near Dallas for making Portland cement is represented in the following analysis:

	Per	cent.
Silica		57.26
Alumina		18.45
Oxide of iron		8.25
Lime		1.52
Magnesia		None
Carbonic acid		1.20
Sulphuric acid		None
Loss on ignition		13.00
	-	
	4	99.68

DAWSON COUNTY.

Location-West Texas, south of Staked Plains.

County seat—Lamesa; population, 500; elev. 3,200.

Area, square miles, 900.

Population, 2,320.

Railroads, 1.

Miles of railroad, 17.83.

Assessed valuation of property of all kinds, \$2,838,026.

Mineral resources—Unknown.

DEAF SMITH COUNTY.

Location—Southwest part of Panhandle; borders on New Mexico.

County seat—Hereford; population, 1,750; elev. 3,806; lat. 34° 49′; long. 102° 24′; mag. dec. 11° 42′.

Area, square miles, 1,477.

Population, 3,942.

Railroads, 1.

Miles of railroad, 24.38.

Assessed valuation of property of all kinds, \$5,992,272.

Mineral resources—Unknown.

DELTA COUNTY.

Location-Northeast Texas.

County seat — Cooper; population, 1,513; elev. 495; lat. 33° 21'; long. 95° 41'; mag. dec. 8° 17'.

Area, square miles, 266.

Population, 14,566.

Railroads, 3.

Miles of railroad, 30.19.

Assessed valuation of property of all kinds, \$5,833,480.

Mineral resources—Clays.

The red and brown burning clays are represented by the folowing analysis of a sample from Cooper:

	Per cent.
Silica	53.48
Alumina	
Oxide of iron	6.24
Lime	8.08
Magnesia	1.44
Soda	1.60
Potash	0.85
Titanic acid	1.00
Water	6.90
Carbonic acid	4.66
	99.01
Total fluves	18' 21

This clay became viscous at a temperature of 2,174 degrees F. and was steel hard at 2,102 degrees F.

DENTON COUNTY.

Location-North Texas.

County seat — Denton; population, 4,732; elev. 620; lat. 83° 12'; long. 97° 8'; mag, dec. 9° 18' (1911).

Area, square miles, 865.

Population, 31,258.

Railroads, 4.

Miles of railroad, 99.14.

Assessed valuation of property of all kinds, \$19,398,170.

Mineral resources—Clays; iron gravel for road-making; mineral waters: limestone.

The pottery clays are represented by two anlyses of samples from near Denton and Lloyd, as follows:

	Near Denton.	Near Lloyd
Silica	69.56	70.00
Alumina	15.69	18.70
Oxide of iron	2.37	1.20
Lime	2.38	0.50
Magnesia	2.00	1.20
doda	0.87	1.50
Potash	0.77	Trace
Titanic acid	1.20	1.00
Water	5.00	6.10
	99.84	100.20
Total fluxes	8.29	3.40

These clays burn steel hard at a temperature of 1,994 degrees F. and vitrify at 2498 degrees F.

The buff-burning semi-refractory clays are represented by three analyses of samples taken at Denton, as follows:

Silica Alumina Oxide of iron Lime Magnesia Soda Potash Titanic acid Water	Top layer. 57.00 25.59 3.44 0.96 0.72 0.82 0.94 1.87 10.00	Middle layer. 51.50 17.60 16.60 1.00 1.10 Trace 1.50 1.60 7.70	Bottom layer. 56.20 23.70 1.50 0.60 1.50 2.20 1.40 1.60 11.10 99.80
Total fluxes	6.98	20.20	7.20

The clay from the top layer showed signs of becoming viscous at a temperature of 2,498 deg. F. The clay from the middle layer became steel hard at 2,246 degress F., and the clay from the bottom layer vitrified at 2,498 degrees F.

The quality of the brick made is shown by the results of testing two samples, several years old, from the Denton Brick & Tile Company, as follows:

	1	2
Weight of a cubic foot, pounds	121.40	107.30
Per cent. of cells by volume	25.50	29.66
Volume of cells in 100 parts by weight	13.16	17.26
Pounds of water absorbed per cu.		
foot	15.97	18.51
Crushed at, pounds per sq. in	2,518	1,792
foot		

The brick made at Denton by the Acme Pressed Brick Company of Fort Worth are represented as follows:

	Weight.	Per cent.	Volume of cells in 100 parts	Pounds of water ab- sorbed per	Crushed at pounds
,	-				per sq. in.
	lbs.	Vol.	by weight.		
1	149.50	5.39	2.25	3.36	6,644
2	150.70	3.67	1.52	2.29	5,926
3	128.90	4.41	1.98	2.55	7,596
4	151.60	3.40	1.40	2.12	7,242
5	130.80	9.86	4.71	6.16	7,442
6	122.60	16.25	8.27	10.13	5,850
7	120.40	21.30	11.04	13.29	4,282

Explanation:

- Smooth vitrified.
- Aztec A.
- 3. Aztec B.
- Aztec B A.
- Denton, light Flemish, grade 1. Denton, dark bronze, grade 1. Denton, dark fire flashed, grade 1.

Composition of water from Brock's mineral well, Denton, Texas:

	Grains per
	U. S. Gal.
Calcium sulphate	130.31
Calcium carbonate	37.50
Calcium chloride	
Magnesium sulphate	. 45.00
Magnesium carbonate	16.80
Magnesium chloride	
Sodium sulphate	
Sodium carbonate	
Sodium chloride	
Oxide of iron	
Alumina	
Organic and volatile matter	
Silica	
	
	793.72

Analysis by P. S. Tilson, Houston.

DE WITT COUNTY.

Location—Southeast Texas: traversed by Guadalupe river. County seat—Cuero; population, 3,109; elev. 177; lat. 29° 6'; long. 97° 17'; mag. dec. 8° 24'.

Area, square miles, 880.

Population, 23,501.

Railroads, 2.

Miles of railroad, 72.61.

Assessed valuation of property of all kinds, \$18,563,040.

Mineral resources—Clays; gravel.

The mineral resources have not been investigated.

DICKENS COUNTY.

Location—West Texas; south of the Panhandle.

County seat — Dickens population, 375; elev. 2,200; lat. 33° 37'; long. 100° 50'; mag. dec. 10° 14'.

· Area, square miles, 918.

Population, 3,092.

Railroads, 1.

Miles of railroad, 11.53.

Assessed valuation of property of all kinds, \$3,973,744.

Mineral resources—Unknown. Heavy salt brines containing chloride of potash are found at Spur. The deepest boring in the State, 4,489 feet, is at Spur.

DIMMIT COUNTY.

Location—South Texas.

County seat—Carrizo Springs; population, 350; elev. 600; lat. 28° 30′; long. 99° 51′; mag. dec. 9° 53′.

Area, square miles, 1,164.

Population, 3,460.

Railroads, 2.

Miles of railroad, 58.38.

Assessed valuation of property of all kinds, \$6,453,344.

Mineral resources—Clays; coal; gravel.

The clays and coal have not been developed.

DONLEY COUNTY.

Location—Southeast part of Panhandle.

County seat—Clarendon; population, 1,946; elev. 2,727; lat. 34° 57'; long. 100° 53'; mag. dec. 10° 36'.

Area, square miles, 878.

Population, 5,284.

Railroads, 2.

Miles of railroad, 49.37.

Assessed valuation of property of all kinds, \$5,688,943.

Mineral resources-Unknown.

DUVAL COUNTY.

Location—South Texas.

County seat—San Diego; population, 1,897; elev. 312; lat. 27° 45'; long. 98° 14'; mag. dec. 8° 36'.

Area, square miles, 950.

Population, 8,964. (This includes portions cut off for Jim Hogg and Dunn).

Railroads, 1.

Miles of railroad, 60.36.

Assessed valuation of property of all kinds, \$4,908,626. (Includes 888 square miles now in Dunn County).

Mineral resources—Petroleum; sandstone; limestone.

There are no producing oil wells in Duval county, but around Benavides certain wells that were bored showed both oil and gas.

One sample of limestone from the Gault quarry has been tested with the following results:

Weight per cubic foot, pounds	149.09
Pounds of water absorbed per cu. ft	0.04
Crushed at pounds per sq. inch	6,303

The composition of the sandstone quarried at Noleda, is as follows:

		cent.
Silica		92.14
Alumina		
Oxide of iron		
Lime		1.52
Carbonic acid		1.20
Loss on ignition		1.42
	1	00.24

CHAPTER III.

DISCUSSION OF COUNTIES—Continued.

Eastland-Lee.

EASTLAND COUNTY.

Location-North of center.

County seat—Eastland; population, 855; elev. 1,421.

Area, square miles, 947.

Population, 23,421.

Railroads, 2.

Miles of railroad, 82.85.

Assessed valuation of property of all kinds, \$9,816,415.

Mineral resources—Clays; coal; sandstone; mineral water; gravel; natural gas.

The buff-burning semi-refractory clays are represented by an analysis of a sample from Cisco, as follows:

P	
Silica	. 62.26
Alumina	. 23.78
Oxide of iron	. 3.02
Lime	. Trace
Magnesia	. 0.10
Soda	. 1.59
Potash	. 1.16
Titanic acid	. 1.40
Water	. 7.12
•	100.10
	100.43

Total fluxes 5.87

This clay became steel hard at a temperature of 1,992 degrees F. and showed signs of fusion at 2,498 degrees F. The composition of the upper shale, at Cisco is closely similar to the above.

The coal is represented by an analysis of a sample from the old Smith-Lee mines, Cisco, as follows:

· ·	
Moisture	 . 13.44
Volatile combustible matter	 . 34.86
Fixed carbon	 36.37
Ash	 . 15.33
	100.00
Sulphur	 . 2.54
British thermal units per nound	9 609

The composition of water from Mangum Mineral Well Water Company:

	Grains per Well No. 1.	U.S. Gal. Well No. 2.
Sodium chloride	25.76 95.71 2.67 65.38 0.41	118.40 34.76 74.25 31.15 65.63 2.91
	278.24	328.96

Analysis by D. L. Glasscock, University of Texas.

ECTOR COUNTY.

Location—West Texas, southeast of New Mexico.

County seat — Odessa; population, 400; elev. 2,890; lat. 31° 52′; long. 102° 23′; mag. dec. 10° 54′.

Area, square miles, 976.

Population, 1,178.

Railroads, 1.

Miles of railroad, 31.50.

Assessed valuation of property of all kinds, \$3,268,005.

Mineral resources—Unknown.

EDWARDS COUNTY.

Location—Southwest Texas.

County seat—Rock Springs; population, 389; elev. 2,400; lat. 30° 1′; long. 100° 12′; mag. dec. 9° 40′.

Area, square miles, 1,387.

Population, 3,768 (includes portion taken from Real County).

Railroads, none (K. C., M. & O. projected).

Assessed valuation of property of all kinds, \$4,518,458 (includes 471 sq. mi. now in Real County).

Mineral resources—Limestone; gravel; petroleum.

The kaolin deposits which occur near Leakey are described under Real county, as this new county embraces this locality.

A sample of limestone from Barksdale, used in the construction of the public school building there, had the following composition and qualities:

	Per cent.
Silica	0.70
Oxide of iron and alumina	0.70
Lime	. 53.12
Magnesia	
Carbonic acid	
Organic matter	0.50
	98.86

Crushing strain in lbs. per square inch...5,293

Lubricating oil of good quality has been found by drilling in the western and northwestern parts of the county, but no producing wells have been brought in.

ELLIS COUNTY.

Location-Northeast of center.

County seat—Waxahachie; population, 6,205; elev. 530; lat. 32° 25′; long. 96° 52′; mag. dec. 8° 25′.

Area, square miles, 1,066.

Population, 5,629.

Railroads, 6.

Miles of railroad, 160.06.

Assessed valuation of property of all kinds, \$35,980,190.

Mineral resources—Clays; limestone; gravel.

The composition of the red and brown-burning clays, for common and pressed brick, is represented by the following average analysis of two samples from Ferris:

	cent.
Silica	48.76
Alumina	15.23
Oxide of iron	4.60
Lime	11.18
Magnesia	1.61
Soda	1.13
Potash	1.29
Titanic acid	0.96
Water	4.93
Carbonic acid	8.22
Sulphuric acid	1.28
Organic matter	0.67
	99.86

These clays became steel hard at about 2,150 deg. F.

The brick manufactured in Ellis county are represented by the following analyses:

8--Min.

	1	2	3	4	5	6	. 7	8
Weight per cu. ft., lbs	33.56 18.89 20.98	36.06 21.46 22.55	22.52	37.95 22.92 23.69	35.11 20.20 21.91	24,96 13,31 15,58	42.29 26.72 26.40	54.79 32.31 34.18

Diamond Press Brick Works, Ferris. 1.

Ferris Press Brick Company, Ferris. "Ferris." Globe Pressed Brick Company, Ferris. Common kiln run. 3. Lone Star Press Brick Company, Ferris. "Red Star," common

building brick.

Palmer Pressed Brick Works, Palmer.

Standard Brick Company, Palmer. Top, or light burned. Standard Brick Company, Palmer. Arch, or hard burned.

8. Texas Press Brick Company, Ferris.

EL PASO COUNTY.

Location—Extreme western part.

County seat—El Paso; population, 39,279; elev. 3,711; lat. 31° 45′; long. 106° 30′; mag. dec. 12° 3′.

Area, square miles, 5,573.

Population, 52,599.

Railroads. 6.

Miles of railroad, 258.24.

Assessed valuation of property of all kinds, \$45,693,385.

Mineral resources—Clays; copper ores; granite; lead ores; limestone; marble; sandstone; silver ores; tin ores; zinc ores; mineral waters; dolomite; materials for cement making; gravel; syenite; syenite-porphyry.

The mineral resources are of a diversified character, but development has been retarded. The cement-making materials are utilized by the Southwestern Portland Cement Company on a considerable scale near El Paso. The tin ore in the Franklin Mountains has been partly developed, but operations have been suspended. The copper, lead, zinc and silver ores of the Quitman Mountains are certainly worthy of close investigation. The lead-zinc ores on the eastern side of the Quitman Mountains have been partly developed and of late operations for lead have been successfully conducted. The copperlead-silver ores on the western side of this range have also been partly developed. Shipments of copper ore carrying 18 per cent of copper have been made from the north end of the range. Shipments of silver-lead ore have also been made from the western side. The proximity of this district to the El Paso smelter, from 80 to 90 miles, and the short distance from rail, 4 to 6 miles, are much in its favor. The granite of the Franklin Mountains is used locally. The blue limestone (Carboniferous?) at the base of the Quitman Mountains, east side, has the following composition:

Per	cent.
Silica	0.30
Alumina	0.09
Oxide of iron	0.61
Lime	52.27
Magnesia	0.25
Carbonic acid	40.80
Sulphuric acid	0.89
Loss on ignition	2.48
	97.69

Two samples of limestone received from A. Courschesne, El Paso, had the following composition and qualities:

Per	cent.
No. 3	3. No. 4.
Silica 4.20	2.10
Alumina	
Oxide of iron	0.40
Lime	53.17
MagnesiaTrace	1.11
Carbonic acid	42.20
Loss on ignition	1.70
99.32	99.68
Weight of a cubic foot lbs169.04 Pounds of water absorbed per	165.36
cubic foot 0.101	None
Crushing strength, pounds per square inch22,400	8,564

Three samples of dolomite received from A. Courschesne, El Paso, had the following composition and qualities:

		Per cent.	
		2	3
Silica	1.86	1.44	0.70
Alumina			
Oxide of iron	1.70	0.42	1.20
Lime	28.89	28.99	29.56
Magnesia	20.18	20.21	20.76
Carbonic acid	44.30	45.20	44.54
Loss on ignition	2.50	2.10	3.20
	99.43	98.35	99.96

Weight per cubic foot, pounds177.21	177.84	177.21
Pounds of water absorbed per cu. ft None	None	
Crushing strength, lbs. per sq. inch18,920	5,966	11,675

The mica deposits near Dahlberg have been opened and worked to some extent, affording a good quality of mica.

A gray granite received from A. Courschesne had the following qualities:

Weight for cubic foot, pounds	.162.06
Pounds of water absorbed per cu. ft	. 0.65
Crushing strength, nounds ner so, inch	

The composition of the limestone used in making cement in El Paso county is as follows:

Silica	Per cent.
Silica	22.76
Alumina	4.70
Oxide of iron	3.40
Lime	36.40
Magnesia	None
Carbonic acid	28.60
Sulphuric acid	None
Loss on ignition	4.70
	100.56

The composition of the water from the Hot Wells is as follows, analysis by Willis W Waite:

	Grains per
	U. S. Gal.
Calcium bicarbonate	1.74
Magnesium bicarbonate	0.96
Silica	1.10
Sodium chloride	2.97
Sodium nitrate	0.43
Sodium bicarbonate	16.62
Sodium sulphate	11.02
Iron	None
Alumina	None
	
	9101

The depth of these wells is 1000 feet and the temperature of the water is 110 deg. F.

The clays of the county have not been fully investigated, but are used by the International Brick Company on an extensive scale.

The value of the pig tin produced from the tin ore in the Franklin Mountains is about \$5,000.

ERATH COUNTY.

Location-north of center.

County seat—Stephenville; population, 2,561; elev. 1,283; lat. 32° 13′; long. 98° 12′; mag. dec. 8° 57′.

Area, square miles, 1,110.

Population, 32,095.

Railroads, 4.

Miles of railroad, 96.74.

Assessed valuation of property of all kinds, \$12,071,575.

Mineral resources—Clays; coal; limestone; natural gas; gravel.

A number of years ago the Green & Hunter Brick Company, Thurber, made a stiff mud repressed brick that crushed at 8,300 lbs. per sq. inch.

We have recently examined a sample of Vertical Fiber Paving Brick, made at Thurber, with the following results:

Weight per cubic foot, pounds153.00	
Pounds of water absorbed per cu. ft 3.42	
Crushed at, pounds per sq. in	
Cross bending test, modulus of rupture 3,174	lbs.

The coal industry which centers around Thurber (Texas & Pacific Coal Company) is considerably larger than in any other county. More than half of the bituminous coal produced in the State comes from this county.

The average of 8-analyses of Thurber coal is as follows:

	Per cent.
Moisture	34.11
Fixed carbon	12.71
	100.00
Sulphur	1.81

By far the greater part of the coal mined in this county is taken by the railroads for use under locomotive boilers, only a small part going into domestic use.

(5) British thermal units per pound....11,871

An excellent quality of natural gas is obtained in Erath county, carrying 932 B. t. p. per cubic foot. It is used locally.

The composition of the red and brown-burning clays is represented by an analysis of a sample from Thurber, as follows:

	Per cent.
Silica	68.75
Alumina	15.81
Oxide of iron	4.05
Lime	
Magnesia	1.64
Soda	
Potash	
Titanic acid	
Water	
Organic matter	2.10
Mat-1 (1)	97.70
Total fluxes	6.37

This clay became viscous at a temperature of 2,174 deg. F.

A sample of limestone from Dublin had the following composition:

F	er cent.
Silica	6.60
Alumina	. 5.92
Oxide of iron	
Lime	. 44.77
Magnesia	. None
Carbonic acid	. 35.65
Sulphuric acid	. None
Loss on ignition	. 5.67
	99.79
Weight per cubic foot, pounds	
Pounds of water absorbed per cu. ft	0.64

The composition of Southland mineral water, owned by the Duffau Mineral Wells Development Company, Duffau, is as follows:

Pe	r cent.
Magnesium chloride	92.90
Calcium sulphate	181.72
Calcium chloride	15.68
Sodium chloride	208.91
Calcium carbonate	22.75
Sodium nitrate	0.35
Iron carbonate (ferrous)	0.01
and the second of the second o	
	522.32

Analysis by G. S. Fraps, A. and M. College.

FALLS COUNTY.

Location—East of center. County seat—Marlin; population, 3,878; elev. 383. Area, square miles, 844. Population, 35,649.

Railroads, 4.

Miles of railroad, 96.79.

Assessed valuation of property of all kinds, \$18,701,520.

Mineral resources—Clays; mineral water.

The composition of the pottery clay is represented by an analysis of a sample from near Denny, as follows:

Silica 68.60 Alumina 20.47 Oxide of iron 0.72 Lime Trace Magnesia 0.40 Soda 0.25 Potash 1.33 Titanic acid 1.13 Water 6.26 99.16	-
Total fluxes	•

This clay has been used in making common stoneware by the Denny Pottery Company.

The composition of the water from the Marlin Hot Wells is as follows:

				G	rains per
					J. S. Gal.
Calcium s	sulphate .			 	3.95
	hloride				
	of potash				
Sulphate	of soda			 	.312.32
Sulphate	of iron			 	. 3.02
Sulphate	of alumin	a		 	. 12.20
Sulphate of	of magnesi	a		 	. 16.15
Sulphate of	of lime			 	. 34.10
Bicarbona	te of soda			 	. 11.66
Silica		• • • •	• • • •	 • • • •	. 1.88
					508.47

Analysis by E. Everhart, University of Texas.

FANNIN COUNTY.

Location—North Texas; borders on Red river. County seat—Bonham; population, 4,844; elev. 568; lat. 33° 35'; long. 96° 11'; mag. dec. 8° 42' (1912). Area, square miles, 940.

Population, 44,801.

Railroads, 5.

Miles of railroad, 102.49.

Assessed valuation of property of all kinds, \$22,646,893.

Mineral resources—Clays; limestone; gravel.

The quality of the sand-lime brick which were formerly made at Bonham is represented by a test made on a sample as follows:

Weight of a cubic foot, lbs	109.90
Per cent. of cells by volume	
Volume of cells in 100 parts by weight	18.27
Pounds of water absorbed per cubic foot.	20.06
Crushed at. lbs. per square inch	1.919

FAYETTE COUNTY.

Location—Southeast Texas; traversed by the Colorado river. County seat—LaGrange; population, 1,850; elev. 272; lat. 29° 52′; long. 96° 49′; mag. dec. 8° 14′.

Area, square miles, 992.

Population, 29,796.

Railroads, 3.

Miles of railroad, 106.31.

Assessed valuation of property of all kinds, \$19,618,293.

Mineral resources—Clays; fuller's earth; lignite; limestone; phosphate rock (reported); sandstone.

Some of the clays have recently come into use by a pottery company in Ohio and shipments have been made.

A sample of so-called "Kaolin," but not a kaolin at all, from near Lytenburg, had the following composition:

	Per cent.
Silica	73.00
Alumina	15.79
Oxide of iron	0.63
Lime	1.29
Magnesia	
Soda	0.16.
Potash	0.10
Titanic acid	
Water	5.76
	98.69
Total fluxon	0.71

This clay burned steel hard at a temperature of 2,390 deg. F.

It is whitish in color, but stained with oxide of iron on the joints and fractures. It burns to a whitish color, but has small black specks through it. It is not a fire clay, for it fuses to a clear glass at a temperature of 3,000 deg. F.

The so-called "pumice dust" is a gritty, sandy whitish clay of closely similar composition to the above.

In 1908 Professor J. C. Blake of the A. and M. College investigated the bleaching qualities of some earths from Fayette county. Five samples were submitted by J. C. Melcher, O'Quinn. The results were as follows, all of the samples being from near O'Quinn. The figures given are based upon 100 for the English standard:

	Bleaching
Owner.	power.
J. C. Melcher, No. 1 M. B	$\boldsymbol{224}$
J. C. Melcher No. 1 M	207
J. C. Melcher, No. 2 L	81
F. Kicner, No. 3 K	
J. Lance, No. 4 X	

These results were from refined cotton seed oil. Professor Blake said: "None of the bleached oils, after standing for two weeks, exposed to the air, showed any increased odour, rancidity, or reversion of color."

Dr. F. C. Thiele, chemist for the Cudahy Refining Company, Coffeyville, Kansas, reported on a sample of earth from H. S. Turnage, Muldoon, November 13, 1911, as follows: Specific gravity, 0.850; weight per cubic foot, 53.1 lbs. The earth was ground to a fineness of 40-60 mesh and 510 grams were used in treating 1,000 cubic centimeters of mineral oil of specific gravity 0.9014 and color No. 5. The amount of filtered oil obtained was 79 per cent, the earth absorbing 21 per cent. The filtered oil was bright and had specific gravity 0.8991, color No. 3.

The same earth was then washed with light gasoline, dried and burned. It was then ground to a fineness of 100 mesh and used again. The amount of filtered oil obtained was 80 per cent, the earth absorbing 20 per cent. The filtered oil was brilliant, had a specific gravity of 0.8917 and color No. 1½.

Dr. Thiele remarked (private communication):

"These results show that the tested earth is an excellent material for bleaching mineral oils, comparing in this respect with the best grades on the market. The reduction of a No. 5 color

(N. P. A.) to a No. 1½ (N. P. A.) by two filtrations through the same body of earth is remarkable. . . . In comparison with fuller's earth from Quincy, Florida, it exceeds the latter in bleaching qualities, while it stands incineration to an equal degree; this latter point being important, as fuller's earths are used over as many as six times, in practice, in order to cheapen their initial cost."

There is a possibility of discovering phosphate rock in Fayette county. Several years ago we received a communication from a reliable prospector that he had found a piece of "float" phosphate in Buckner's creek, about 8 miles west of Muldoon, that carried on analysis 82 per cent of bone phosphate. He found also in a railroad cut $3\frac{1}{2}$ miles south of Flatonia a phosphate rock that carried 72 per cent of bone phosphate.

Either one of these samples represents a high grade phosphate, especially the sample from Buckner's creek. Nothing further has been done in the effort to locate a workable bed of phosphate rock in Fayette county. The attention of a number of persons, directly and intimately concerned in the phosphate industry, has been called to this matter, but they were not disposed to expend the necessary means for further and protracted inquiry. The Bureau of Economic Geology has not had the means to pursue the matter, and it stands today as it did several years ago. Much field work would have to be done and a great many samples would have to be analyzed. The importance of the subject merits the expenditure of considerable time and money.

The lignite has not been developed. The average of five analyses of the lignite from this county is as follows:

	Pe	r cent.
Moisture		25.70
Volatile combustible matter		33.31
Fixed carbon		
Ash		16.37
	•	100.00
Sulphur		2.07

With 25 per cent of moisture in this lignite there would be 7,797 British thermal units per pound.

At Chalk Bluff, on the Colorado river, about 12 miles above LaGrange, there is an exposure of 5 feet of lignite. At Manton's Bluff the thickness of the seam is 15 feet, but it is of varying quality. On O'Quinn creek the seams run to 8 feet in thickness and appear to be of good quality.

The quality of the limestone on Buckner's creek, from 3 to 4 miles west of LaGrange, is represented by the following samples received from J. C. Melcher, O'Quinn:

	1	2
Silica	8.50	28.70
Alumina	0.60	0.59
Oxide of iron	2.26	0.93
Lime	46.87	37.39
Magnesia	0.39	0.30
Carbonic acid	37.10	29.38
Sulphuric acid	0.54	0.41
Loss on ignition	2.96	3.02
and the second s	99.22	100.72
Weight per cubic foot, pounds Pounds of water absorbed per	156	140
cu. ft	3.81	4.08
Crushed at, pounds per square in.	5,615	15,325

Near Lena there are exposures of a fine-grained sandstone which has a crushing strength of 7,090 to 14,075 pounds per square inch. This stone has been used to a considerable extent.

At Muldoon, A. B. Kerr & Sons have had a good sandstone quarry for some years. The average quality of this stone is shown by the following tests:

Weight per cubic foot, pounds	130.00
Pounds of water absorbed per cu. ft	10.00
Crushed at, pounds per sq. inch	4,369

The absorption of water, in pounds per cubic foot, varied from 5.60 to 14.42. The crushing strength, in pounds per square inch, varied from 1,822 to 9,150, according to the quality of the material.

FISHER COUNTY.

Location-Northwest of center.

County seat—Roby; population, 712; elev. 1,800; lat. 32° 45′; long. 100° 22′; mag. dec. 10° 26′.

Area, square miles, 836.

Population, 12,596.

Railroads, 4.

Miles of railroad, 69.38.

Assessed valuation of property of all kinds, \$6,124,199.

Mineral resources-Unknown.

FLOYD COUNTY.

Location-West Texas; south of Panhandle.

County seat — Floydada; population, 664; elev. 3,137; lat. 33° 59′; long. 101° 15′; mag. dec. 10° 28′.

Area, square miles, 1,036.

Population, 4,638.

Railroads, 1.

Miles of railroad, 18.90.

Assessed valuation of property of all kinds, \$6,544,336.

Mineral resources-Unknown.

FOARD COUNTY.

Location-North Texas.

County seat—Crowell; population, 1,341; elev. 1,463; lat. 34° 10′; long. 99° 42′; mag. dec. 10° 43′.

Area, square miles, 636.

Population, 5,726.

Railroads, 2.

Miles of railroad, 21.76.

Assessed valuation of property of all kinds, \$4,254,831.

Mineral resources—Copper ores; gypsum.

The copper ores of Foard county are Permian and have not been developed.

FORT BEND COUNTY.

Location—Southeast Texas; traversed by the Brazos river. County scat—Richmond; population, 1,371; elev. 104; lat. 29° 35′; long. 95° 45′; mag. dec. 8° 29′.

Area, square miles, 897.

Population, 18,168.

Railroads, 6.

Miles of railroad, 141.65.

Assessed valuation of property of all kinds, \$14,903,443.

Mineral resources—Clays; gravel.

The sandy brick clays are represented by an analysis of a sample from Fulshear (Wilson plantation), as follows:

Per Silica	cent.
Silica	33.80
Alumina	9.23
Oxide of iron	2.30
Dime	Frace
Magnesia	Frace
Soda	0.54
Potash	0.56
Titanic acid	0.87
Water	3.10
10	00.40
Total fluxes	3.40

It does not burn steel hard at a temperature of 2,390 deg. F., but at 1,922 deg. it burns hard enough to make a good brick.

At Rosenberg the Brazos Tile & Brick Company makes brick and hollow building tile, as also sand-lime brick. Samples of the brick were tested with the following results:

No.	1. Common.	Sand-lime.
Weight per cubic foot	117.70	112.20
Per cent. of cells by volume	26.98	30.06
Volume of cells in 100 parts by weight	14.34	16.77
Pounds of water absorbed per cu. ft	16.87	18.81
Crushed at, pounds per sq. inch	4,813	1,575

FRANKLIN COUNTY.

Location—Northeast Texas.

County seat—Mt. Vernon; population, 1,200; elev. 476; lat. 33° 12′; long. 95° 12′; mag. dec. 8° 8′ (1911).

Area, square miles, 325.

Population, 9,331.

Railroads, 3.

Miles of railroad, 14.87.

Assessed valuation of property of all kinds, \$2,945,975.

Mineral resources—Clays.

The mineral resources of Franklin county have not been investigated.

FREESTONE COUNTY.

Location—East of center; borders on the Trinity river. County seat—Fairfield; population, 629; elev. —; lat. 31° 43′; long. 96° 9′; mag. deg. 8° 26′ (1911). Area, square miles, 947.

Population, 20,557.

Railroads, 3.

Miles of railroad, 46.63.

Assessed valuation of property of all kinds, \$7,859,305.

Mineral resources—Clays; lignite; limestone.

The clays have not been investigated.

In the southern part of the county, near Donie, there is a very good quality of lignite and one of the principal seams runs to 12 feet in thickness. The average quality of this lignite is given in the following analysis:

Don cont

Moisture			
Volatile combustible matter	 		32.72
Fixed carbon	 		30.93
Ash	 		9.98
		-	
			100.00
Sulphur	 		1.34
British thermal units per pound	 		7.984

FRIO COUNTY.

Location-South Texas.

County seat—Pearsall; population, 1,799; elev. 646; lat. 28° 55'; long. 99° 9'; mag. dec. 8° 26'.

Area, square miles, 1,064.

Population, 8,895.

Railroads, 1.

Miles of railroad, 34.55.

Assessed valuation of property of all kinds, \$7,132,208.

Mineral resources-Clays; lignite.

The mineral resources of this county have not been investigated.

GAINES COUNTY.

Location—West Texas; borders on New Mexico.

County seat—Seminole; population, 325.

Area, square miles, 1,590.

Population, 1,255.

Railroads, none.

Assessed valuation of property of all kinds, \$2,803,880.

Mineral resources-Unknown, with exception of salt lakes.

GALVESTON COUNTY.

Location—Southeast Texas; borders on the Gulf of Mexico. County seat—Galveston; population, 36,981; elev. 6; lat. 29° 18'; long. 94° 47'; mag. dec. 7° 28'.

Area, square miles, 438.

Population, 44,479.

Railroads, 11.

Miles of railroad, 440.63.

Assessed valuation of property of all kinds, \$41,320,509.

Mineral resources—Clays; shell for road making.

GARZA COUNTY.

Location-West Texas; south of Staked Plains.

County seat—Post City; population, 350; elev. 2,543.

Area, square miles, 821.

Population, 1,995.

Railroads, 1.

Miles of railroad, 40.91.

Assessed valuation of property of all kinds, \$3,004,174.

Mineral resources-Unknown.

GILLESPIE COUNTY.

Location—Southwest of center.

County seat—Fredericksburg; population, 2,100; elev. 1,721; lat. 30° 15′; long. 98° 50′; mag. dec. 9° 9′.

Area, square miles, 1,140.

Population, 9,447.

Railroads, 1.

Miles of railroad, 12.

Assessed valuation of property of all kinds, \$5,807,690.

Mineral resources—Bat guano; granite; limestone; marble; sandstone; serpentine; gravel.

Bat guano occurs in limestone caves.

The granites of this county are of excellent quality and are utilized by Nagel Bros., Fredericksburg. The stone placed on the market by this firm comes from Bear Mountain. It is of a fine red color, close grained and takes an excellent polish.

There is excellent white marble in this county, but it has not been developed. Gold has been found, but there are no producing mines. Serpentine exists in considerable deposits and of great and varied beauty, but it has not been placed on the market.

Limestones and dolomites are abundant.

The following average of eight analyses represents the composition and quality of some of the limestones from this county:

	Per	cent.
Silica		2.36
Alumina		0.64
Oxide of iron		0.91
Lime		51.03
Magnesia		0.91
Carbonic acid		40.82
Loss on ignition		2.65
		99 34

A magnesian limestone of odd and beautiful markings occurs near Willow City. It takes a fine polish and would doubtless find favor as an ornamental stone for interior work. Its composition and qualities are as follows:

	r cent.
Silica	3.80
Alumina	7.59
Oxide of iron	2.67
Lime	30.20
Magnesia	8.93
Carbonic acid	40.73
Sulphuric acid	1.72
Loss on ignition	4.82
•	
	100.51
Weight of a cubic foot, pounds	176.8
Pounds of water absorbed per cu. ft	0.19
Crushed at, pounds per square inch	8,000

The dolomites are well developed in Gillespie county. The following average of 5 analyses represents the composition of some of the dolomites:

Silica	er cent.
Silica	. 4.68
Alumina	. 5.28
Oxide of iron	
Lime	
Magnesia	
Carbonic acid	
Loss on ignition	4.29
	100.07

GLASSCOCK COUNTY.

Location—West Texas.

County seat—Garden City; population, 200; lat. 31° 52′; long. 101° 29′; mag. dec. 10° 44′.

Area, square miles, 952.

Population, 1,143.

Railroads, none.

Assessed valuation of property of all kinds, \$1,926,038.

Mineral resources-Unknown.

GOLIAD COUNTY.

Location-Southeast Texas.

County seat—Goliad; population, 1,261; elev. 167.

Area, square miles, 817.

Population, 9,909.

Railroads, 1.

Miles of railroad, 30.24.

Assessed valuation of property of all kinds, \$8,652,755.

Mineral resources—Clays; limestone; natural gas.

The mineral resources of this county have not been investigated.

GONZALES COUNTY.

Location—Southeast Texas.

County seat — Gonzales; population, 3,139; elev. 300; lat. 29° 30'; long. 97° 26'; mag. dec. 8° 21'.

Area, square miles, 1,079.

Population, 28,055.

Railroads, 2.

Miles of railroad, 85.70.

Assessed valuation of property of all kinds, \$15,946,265.

Mineral resources—Clays; iron ore; lignite; natural gas; petroleum; sandstone.

The calcareous brick clays are represented by the average of two analyses of samples taken at the works of the Sunset Brick & Tile Company, Gonzales, as follows:

	rer cent.
Silica	39.12
Alumina	7.31
Oxide of iron	1.89

9-Min.

	Per	cent.
Lime		24.85
Magnesia		
Soda		
Potash		0.04
Titanic acid		0.45
Water		2.46
Carbonic acid		21.37
	_	99.52
Total fluxes		28.82

These clays become viscous at a temperature of 2,318 deg. F. Another kind of clay occurs in Gonzales county, on the Harwood property. It has been termed a fire-clay, but is not a fire-clay. Its composition and qualities are as follows:

•	\mathbf{Per}	cent.
Silica	 	73.16
Alumina		13.86
Oxide of iron	 	1.44
Lime	 	3.14
Magnesia	 	1.61
Soda	 	0.23
Potash		Trace
Titanic acid	 	0.70
Water	 	5.15
		99.20
Total fluxes	 	6.42

It began to become viscous at a temperature of 2,390 deg. F.

There also exist in this county extensive deposits of a fine-grained milk white clay, stained with oxide of iron. No special uses for this clay have been found, but it is reported that it is an excellent material for refining certain animal oils and greases. Its composition and qualities are shown in the following average of two analyses of samples from the Harwood property, 6 miles southeast of Gonzales:

Pe	r cent.
Silica	75.41
Alumina	
Oxide of iron	0.72
Lime	
Magnesia	1.80
Soda	0.56
Potash	0.29
Titanic acid	0.19
Water	5.93
	99.21
Total fluxes	5.20

These clays fused to a clear glass at a temperature of 3,038 deg. F.

The brick manufactured are represented by the following tests on samples received from the Sunset Brick & Tile Company, Gonzales:

	Common No. 1	Face 510	Gonzales No. 3	Gonzales No. 1	Face 530
Weight per cu. ft., pounds Per cent of cells by volume Volume of cells in 100 parts	93.82 46.21	92.76 47.05	89.60 48.39	91.70 47.57	91.00 47.58
by weight	30.75	81.67	33.70	32.37	32.57
Pounds of water absorbed per cubic foot	28.64	28.17	30.19	29,68	29,63
Crushing strength, pounds per square inch	1,425	2,318	2,192	2,000	3,602

The lignite has not been developed. Brown iron ore (limonite) exists as large boulders and as gravel in the hills south of Harwood. Analyses have shown it to carry 52 per cent of iron.

The petroleum and natural gas have not been developed. Gas from a well 9 miles west of Gonzales gave 862 B. t. u. per cubic foot. Near Ottine a well bored to a depth of about 3,400 feet showed a little oil and gas, but not sufficient for commercial purposes.

There are heavy outcrops of a close-grained iron-bearing sandstone near the tops of hills southeast of Ottine which would yield a good stone for ballasting railroad tracks.

GRAY COUNTY.

Location—Eastern part of Panhandle.

County seat—Lefors; population,—; elevation, 2900.

Area, square miles, 860.

Population, 3,405.

Railroads, 2.

Miles of railroad, 41.90.

Assessed valuation of property of all kinds, \$3,564,083.

Mineral resources—Unknown.

GRAYSON COUNTY.

Location-North Texas; borders on the Red river.

County seat—Sherman; population, 12,412; elev. 720; lat. 33° 36'; long. 96° 36'; mag. dec. 8° 35'.

Area, square miles, 1,012.

Population, 65,996.

Railroads, 10.

Miles of railroad, 250.85.

Assessed valuation of property of all kinds, \$45,521,022.

Mineral resources—Clays; lignite; limestone; mineral waters; gravel.

The red and brown-burning clays are represented by an analysis of a sample from near Sherman, as follows:

Per	cent.
Silica 5	9.34
Alumina 1	5.71
Oxide of iron	5.76
Lime	3.00
Magnesia	2.00
Soda	1.44
Potash	0.56
Titanic acid	1.83
Water	7.02
Carbonic acid	1.07
Sulphuric acid	0.31
Organic matter	2.00

10	0.13
Total fluxes 1	2.85

This clay became steel hard at a temperature of 2,102 deg. F. and viscous at 2,382 deg. F.

Composition of water from Tioga Sanitarium & Water Company, Tioga:

£ 0 7 0 1			
Well	Well	Well	Well
No. 1	No. 3	No. 4	No. 5
		U. S. Gal.	2,10.
Sodium sulphate		130.86	15.43
Sodium bicarbonate 10.30			
Sodium chloride 80.02	76.85	67.75	206.23
Magnesium chloride 40.50			
Calcium chloride 54.50			
Calcium sulphate 43.84	95.68	103.97	88.32
Calcium carbonate 7.59	5.74		6.17
Magnesium sulphate	64.78	175.45	44.62
Silica 1.57	2.92	2.54	5.59
Alumina	2.90	2.54	1.82
238.32	248.87	488.67	368.18

GREGG COUNTY.

Location—Northeast Texas.

County seat—Longview; population, 5,155; elev. 339; lat. 32° 29′; long. 94° 41′; mag. dec. 7° 27′.

Area, square miles, 287.

Population, 14,140.

Railroads, 5.

Miles of railroad, 53.71.

Assessed valuation of property of all kinds, \$4,723,655.

Mineral resources—Clays; iron ore; lignite; sandstone; mineral waters; gravel.

The sandy brick clays are represented by two analyses of samples from Longview, as follows:

	Per	cent.
	1	2
Silica	73.06	68.50
Alumina	9.88	18.41
Oxide of iron	6.92	3.02
Lime	1.50	0.70
Magnesia	0.25	1.05
Soda	0.12	0.91
Potash	trace	0.47
Titanic acid	1.00	1.31
Water	6.64	6.20
	99.37	100.57
Total fluxes	8.81	6.15

These clays became viscous at a temperature of 2,570 deg. F.

The quality of the brick that have been made in this county is shown by the results of a test on a sample from Longview, as follows:

Weight per cubic foot, pounds	109.8
Per cent. of cells by volume	32.22
Volume of cells in 100 parts by weight.	18.31
Pounds of water absorbed per cu. ft	20.10
Crushed at, pounds per square inch	. 1,223

So far as known, there are but few deposits of iron ore in Gregg county that are of commercial importance. Most of the deposits carry too little iron and too much sand to be worked. On the Isaac Skillern headright, in the northeastern part of the county and south of the Texas & Pacific Railway, a brown ore (limonite) occurs, carrying 10.10 per cent of silica and 52.79 per cent of iron. An ore of a 11.60 per cent silica and 46.88 per cent iron is found on the W. Robinson headright. The field to which these ores belong is thought to comprise about 14 square miles.

In 1899 there was built at Longview, by the Longview Kelly

Plow Manufacturing Company, one 1-gross ton Tropenas Steel Converter.

The first steel was made in December, 1899. This was the first steel converter built in Texas and made the first steel produced in the State.

The steel plant was abandoned some years ago, but the manufacture of plows is still continued.

The iron ore area in this county may be taken at 22 square miles.

GRIMES COUNTY.

Location—Southeast Texas; east of the Navasota river.

County seat—Anderson; population, 572; elev. 368; lat. $30^{\circ} 29'$; long. $95^{\circ} 59'$; mag. dec. $7^{\circ} 45'$.

Area, square miles, 770.

Population, 21,205.

Railroads, 4.

Miles of railroad, 155.93.

Assessed valuation of property of all kinds, \$12,825,088.

Mineral resources—Clays; lignite; sandstone; gravel.

Grimes county clays of easy fusibility are represented by an analysis of a sample from a locality 13 miles northeast of Navasota, as follows:

	Per cent.
Silica	68.56
Alumina	
Oxide of iron	
Lime	
Magnesia	
Soda	
Potash	
Titanic acid	0.43
Water	
· · · · · ·	
	100.95
Total fluxes	6.43

This clay began to become viscous at a temperature of 2,174 deg. F.

The deposit from which this sample was taken extends also into Brazos county.

Two other analyses of clays from this county may be given, as follows:

	Piedmont Springs.	Courtney.
	Per	cent.
Silica	. 58.50	40.69
Alumina		12.68
Oxide of iron	. 3.21	3.90
Lime	2.34	18.12
Magnesia		0.92
Soda	$\begin{array}{cccc} . & 4.93 \\ . & 2.70 \end{array}$	1.14
Carbonic acid and water.		21.45
	99,88	100.00

For the lignite in this county, see under Brazos county.

GUADALUPE COUNTY.

Location-South of center.

County seat — Seguin; population, 3,116; elev. 553; lat 29° 34′; long. 97° 57′; mag. dec. 8° 52′ (1912).

Area, square miles, 717.

Population, 24,913.

Railroads, 1.

Miles of railroad, 36.61.

Assessed valuation of property of all kinds, \$14,119,587.

Mineral resources—Clays; gravel.

The mineral resources have not been investigated.

The calcareous brick clays are represented by an analysis of a sample from Seguin, as follows:

Per o	ent.
Silica 1	8.62
Alumina	3.23
Oxide of iron	
Lime 4	
	0.42
	2.42
Carbonic acid 3	2.50
9	9.75
Total fluxes 4	2.98

Temperature of fusion above 2,246 deg. F.

The quality of the brick made in this county is shown by the following tests of two samples from the Seguin Vitrified & Face Brick Company:

	Seguin	
	dry press.	Stiff mud.
Weight of a cubic foot, pounds	112.9	119.4
Per cent. of cells by volume	28.81	20.63
Volume of cells in 100 parts by weight	15.93	`10.79
Pounds of water absorbed per cu. ft	17.98	12.88
Crushed at, pounds per sq. inch	2,271	3,765

HALE COUNTY.

Location—Northwest Texas; south of the Panhandle. County seat—Plainview; population, 2,829; elev. 3,325; lat. 34° 12′; long. 101° 45′; mag. dec. 10° 55′.

Area, square miles, 1,036.

Population, 7,566.

Railroads, 1.

Miles of railroad, 46.70.

Assessed valuation of property of all kinds, \$8,547,561.

Mineral resources—Unknown.

HALL COUNTY.

Location—Northwest Texas; south of the Panhandle. County seat — Memphis; population, 1,936; elev. 1,980; lat. 34° 44′; long. 100° 32′; mag. dec. 10° 6′.

Area, square miles, 868.

Population, 8,279.

Railroads, 1.

Miles of railroad, 17.29.

Assessed valuation of property of all kinds, \$5,982,217.

Mineral resources—Unknown.

HAMILTON COUNTY.

Location—North of center.

County seat — Hamilton; population, 1,548; elev. 1,250; lat. 31° 41′; long. 98° 7′; mag. dec. 9° 14′ (1912).

Area, square miles, 858.

Population, 15,315.

Railroads, 2.

Miles of railroad, 49.77.

Assessed valuation of property of all kinds, \$10,933,042.

Mineral resources—Clays; limestone; gravel.

The clays have not been investigated. The limestones are

represented by an analysis of a sample from a mile east of Hico, on the Texas Central Railway, as follows:

$oldsymbol{I}$		
Silica		3.44
Alumina		0.43
Oxide of iron		1.09
Lime		53.33
Carbonic acid		41.90
	_	
		99.89

This stone had the following physical properties:

Weight per cubic foot, pounds1.	27.2
Pounds of water absorbed per cu. ft	1.05
Crushed at, pounds per square inch	5,200

HANSFORD COUNTY.

Location—North line of the Panhandle.

County seat—Hausford; population, 180; elev. —; lat. 36° 13′; long. 101° 16′; mag. dec. 11° 17′.

Area, square miles, 860.

Population, 935.

Railroads, none.

Assessed valuation of property of all kinds, \$1,489,777. Mineral resources—Unknown.

HARDEMAN COUNTY.

Location—Northwest Texas; southeast of Panhandle. County seat—Quanah; population, 3,127; elev. 1,568; lat. 34° 17′; long. 99° 44′; mag. dec. 10° 12′.

Area, square miles, 532.

Population, 11,213.

Railroads, 4.

Miles of railroad, 71.98.

Assessed valuation of property of all kinds, \$8,973,320.

Mineral resources--Copper ores; gypsum; petroleum(?)

The copper ore belongs to the Permian formation. Rich nodules of chalcocite and malachite, the latter as pseudomorph after wood are found, but there are no mining operations. An excellent quality of gypsum cement is made from the gypsite deposits at Acme. There are no producing oil wells in the county, but, in places, the geological conditions for the existence of oil are not unfavorable.

HARDIN COUNTY.

Location—Southeast Texas; west of the Neches river. County seat—Kountze; population, 342; elev. 85; lat. 30° 22'; long. 94° 18'; mag. dec. 7° 47' (1912).

Area, square miles, 844.

Population, 12,947.

Railroads, 4.

Miles of railroad, 106.70.

Assessed valuation of property of all kinds, \$10,514,721.

Mineral resources—Asphalt rock; clays; natural gas; petroleum.

Asphaltic materials have been found near Saratoga and Sour Lake, but they have not been utilized.

The clays have not been investigated.

Natural gas occurs with the petroleum and is used locally.

Hardin is one of the most important oil-producing counties in the State. The Saratoga and Sour Lake fields came into production in 1902. The statistics for the years 1902 and 1903 are combined, and show a small production. From 1902 to and including 1913 the Saratoga field yielded 15,000,097 barrels, valued at \$8,942,291; and the Sour Lake field 23,020,152 barrels, valued at \$13,254,496. The Batson field came into production in 1903, and yielded, to the close of 1913, 25,661,013 barrels, valued at \$12,437,274. The total oil production of Hardin county, to the close of 1913, was 63,681,262 barrels, valued at \$34,635,061. To the close of the year 1913, Hardin had yielded considerably more oil than any other county.

HARRIS COUNTY.

Location—Southeast Texas; borders on Galveston Bay. County seat—Houston; population, 93,112 (1913-14); elev. 53; lat. 29° 47'; long. 95° 21'; mag. dec. 7° 53'.

Area, square miles, 1,761.

Population, 115,693.

Railroads, 13.

Miles of railroad, 394.38.

Assessed valuation of property of all kinds, \$129,504,485. Mineral resources—Clays; gravel; natural gas; petroleum.

The red and brown-burning clay are represented by two analyses of samples from Houston, as follows:

Silica Alumina Oxide of iron Lime Magnesia Soda Potash Titanic acid. Water Carbonic acid		2 49.40 17.90 4.50 9.50 1.88 Trace None 1.05 4.58 9.55
-	97.05	98.36
Total fluxes	8.57	15.88

These clays became viscous at a temperature of 2,246 deg. F.

The sandy brick clays are represented by the average of three analyses:

Pe	r cent.
Silica	83.41
Alumina	7.20
Oxide of iron	2.26
Lime	0.78
Magnesia	0.45
Soda	0.12
Potash	Trace
Titanic acid	0.66
Water	
	98.46
Total fluxes	3.97

These clays became steel hard at about 2,300 deg. F. The clay at Cedar Bayou is similar to the above.

The natural gas has not been developed commercially, although good rock pressure has been observed in a well near Houston. The gas in the Humble field is used locally.

Harris is a very important oil county. The Humble field came into production in 1905 and yielded, to the close of 1913, 37,-370,510 barrels, valued at \$18,864,112. The Goose Creek field came into production in 1912, and has yielded 293,539 barrels, valued at \$234,102.

The total oil production of Harris county has been 37,664,049 barrels, valued at \$19,098,214.

HARRISON COUNTY.

Location-Northeast Texas; borders on Louisiana.

County seat—Marshall; population, 11,452; elev. 375; lat. 32° 32'; long. 94° 21'; mag. dec. 7° 44' (1910).

Area, square miles, 873.

Population, 37,243.

Railroads, 5.

Miles of railroad, 111.14.

Assessed valuation of property of all kinds, \$12,901,680.

Mineral resources—Clays; iron ore; lignite; sandstone; gravel.

The sandy brick clays are represented by an analysis of a sample from Marshall, as follows:

Silica	,		\mathbf{Per}	cent.
Silica				83.90
Alumina				5.52
Oxide of iron	٠.			4.75
Lime			٠.	0.40
Magnesia				1.32
Soda	٠.			0.45
Potash	٠.,			0.15
Titanic acid				1.57
Water				2.44
			_	
				.00.50
Total fluxes				7.07

This clay does not burn steel hard at a temperature of 2,570 deg. F.

A clay classed as pottery clay occurs on the road between Marshall and Jefferson. Analysis as follows:

Alumina Oxide of iron Alkalies Water	$\begin{array}{c} 1.57 \\ 2.00 \end{array}$
Total fluxes	99.90

Other analyses of clays from this county do not show essential variations from the average of the two above given.

The quality of the brick is shown by the tests on a sample from the Marshall Brick Company, as follows:

Weight per cubic foot, pounds	127.0
Per cent of cells by volume	22.99
Volume of cells in 100 parts by weight	11.30
Pounds of water absorbed per cu. ft	14.35
Crushed at, pounds per square inch	1,755

The iron ore resources appear to warrant further investigation. The laminated brown ores carry from 42.85 to 48.75 per cent of iron, with silica from 11.60 to 26.70 per cent, and alumina from 2.05 to 10.77 per cent.

The nodular concretionary ores appear to have the following average composition:

	cent .
Metallic iron	 47.81
Silica	
Alumina	

The conglomerate ores seldom carry more than 44 per cent of iron. The iron ore area in the county may be taken at 245 square miles.

In many parts of the county are extensive deposits of an irongravel which, while not carrying enough iron to make them valuable as iron ores, would make an excellent road material.

There are no lignite mines in operation in the county. The quality of the lignite, which varies from 2 to 6 feet in thickness, is shown by the following average of five analyses:

	Per	cent.
Moisture		8.41
Volatile combustible matter		38.41
Fixed carbon		28.65
Ash		24.53
		00.00
Sulphur		0.74

HARTLEY COUNTY.

Location—West line of the Panhandle; borders on New Mexico.

County seat — Channing; population, 300; elev. 3,817; lat. 35° 41'; long. 102° 17'; mag. dec. 11° 57'.

Area, square miles, 1,460.

Population, 1,298.

Railroads, 3.

Miles of railroad, 81.92.

Assessed valuation of property of all kinds, \$5,376,036. Mineral resources—Unknown.

HASKELL COUNTY.

Location-Northwest Texas.

County seat—Haskell; population, 2,436; elev. 4,013; lat. 33° 10′; long. 99° 43′; mag. dec. 9° 56′.

Area, square miles, 843.

Population, 16,249.

Railroads, 3.

Miles of railroad, 74.93.

Assessed valuation of property of all kinds, \$8,643,079.

Mineral Resources—Copper ores; gypsum.

Mineral resources—Copper ores; gypsum.

The copper ores are Permian. Many rich pockets of chalcocite have been found, but no mining operations are conducted.

HAYS COUNTY.

Location—South of center.

County seat—San Marcos; population, 4,071; elev. 581; lat. 29° 54′; long. 97° 56′; mag. dec. 8° 29′.

Area, square miles, 647.

Population, 15,518.

Railroads, 2.

Miles of railroad, 36.00.

Assessed valuation of property of all kinds, \$10,269,670.

Mineral resources—Bat guano; clays; limestone; gravel.

Hays county is rich in gravel for road making. The average composition of some of the limestones of the county along the line of the International & Great Northern Railway and the Austin-San Antonio Post-Road is as follows:

	. 1	Per	cent .
Silica			1.89
Alumina			1.04
Oxide of iron			1.45
Lime			52.48
Magnesia			None
Carbonic acid			40.19
Sulphuric acid			1.96
Loss on ignition			-0.91
		_	
			99.82

The crushing strength, in pounds per sq. in. varies from 8,000 to 16,000.

HEMPHILL COUNTY.

Location—East line of the Panhandle; borders on Oklahoma. County seat—Canadian; population, 1,648; elev. 2,340; lat. 35° 55′; long. 100° 24′; mag. dec. 11° 6′.

Area, square miles, 860.

Population, 3,170.

Railroads, 1.

Miles of railroad, 31.83.

Assessed valuation of property of all kinds, \$3,870,481. Mineral resources—Unknown.

HENDERSON COUNTY.

Location—Northeast Texas; between the Trinity and the Neches rivers.

County seat — Athens; population, 2,261; elev. 492; lat. 32° 13′; long. 95° 51′; mag. dec. 8° 7′.

Area, square miles, 940.

Population, 20,131.

Railroads, 2.

Miles of railroad, 80.91.

Assessed valuation of property of all kinds, \$7,912,145.

Mineral resources—Clays; iron ore; lignite; sandstone; gravel.

The pottery clays are represented by the average of two analyses of samples taken at Athens, as follows:

Per	cent.
Silica	71.11
Alumina	
Oxide of iron	0.28
Lime	0.05
Magnesia	0.41
Soda	0.68
Potash	0.36
Titanic acid	1.45
Water	6.31
	98.50
Total fluxes	1.80
Point of fusion, 3,074 to 3,146 deg. F.	

An analysis of a fire clay from Athens is as follows:

	Per	· cent.
Silica		68.55
Alumina		26.00

		Per cent. 0.11 6.00
Total flu	V OC	100.66

A stoneware clay from Athens had the following composition:

Silica	Per	cent.
Silica		69.20
Alumina		21.03
Oxide of iron		1.37
Magnesia		0.94
Loss on ignition		5.16
	_	97.70
Total fluxes		2.31

The quality of the brick is shown by the results of tests on samples from the museum several years old, and marked "Malakoff Pressed Brick Company, Malakoff," as follows:

1	2	3	4
24.06 11.70 15.03	22.89 11.23 14.28	$9.23 \\ 11.69$	22.56 11.27 14.68

- Shade D. Golden Orange. Standard shape.
- Shade A.
- Shade E.
- Old Ivory. Standard shape. Russian Black. Standard shape. Mottled Face. Standard shape. Shade C.

In the southeastern part of the county there is a considerable area of brown iron ore (limonite). The ore from this field appears to have the following average composition:

	Per cent.
Metallic iron	47.26
Silica	12.13
Alumina	8.86

Towards the central part of the county, around Brownsboro, there is an iron ore field of about two square miles in area, which has a somewhat better ore, as by the following analysis:

$\mathbf{P}\mathbf{e}$	r cent.
Metaillic iron	51.52
Silica	10.06
Alumina	9.89

None of these ores has been developed. The iron ore area in the county may be taken at 19 square miles.

HIDALGO COUNTY.

Location—Extreme southern part; borders on the Rio Grande. County seat—Edinburg; population, 200; elev. 422.

Area, square miles, 1,583.

Population, 13,728.

Railroads, 1.

Miles of railroad, 71.97.

Assessed valuation of property of all kinds, \$13,202,734.

Mineral resources—Clays; gravel.

The mineral resources of this county have not been investigated.

HILL COUNTY.

Location-Northeast of center.

County seat—Hillsboro; population, 6,115; elev. 621; lat. 32° 1'; long. 97° 8'; mag. dec. 9° 5' (1910).

Area, square miles, 1,006.

Population, 46,760.

Railroads, 8.

Miles of railroad, 236.12.

Assessed valuation of property of all kinds, \$30,593,260.

Mineral resources—Clays; limestone; mineral waters; gravel The mineral resources of Hill county have not been investigated.

The composition of the mineral water from Hubbard, as communicated to us by the management of the Hot Wells Sanitarium, is as follows:

200 20-20 11 20				
•		per U.	S.	Gal.
Sodium chloride		292.0		
Sodium sulphate		195.0		
Calcium sulphate		49.3		
Iron sulphate		20.2		
Potassium sulphate		10.0		
Magnesium sulphate		6.8		
Sodium carbonate		110.4		
	_			
		6927		

This well is 3,300 feet deep; the temperature of the water is 137 deg. F., and the flow is 200,000 gallons per 24 hours.

HOCKLEY COUNTY (Unorganized)

Location-Northwest Texas; in Staked Plains.

Area, square miles, 977.

Population, 137.

Railroads, 1.

Miles of railroad, 7.22.

Assessed valuation of property of all kinds, \$1,129,904.

Mineral resources—Unknown.

HOOD COUNTY.

Location—North of the center.

County seat — Granbury; population, 1,336; elev. 698; lat. 32° 27'; long. 97° 46'; mag. dec. 8° 55' (1910).

Area, square miles, 436.

Population, 10,008.

Railroads, 2.

Miles of railroad, 35.05.

Assessed valuation of property of all kinds, \$4,038,337.

Mineral resources—Clays; limestone; gravel.

The mineral resources of Hood county have not been investigated.

HOPKINS COUNTY.

Location-Northeast Texas.

County seat—Sulphur Springs; population, 5,151; elev. 494; lat. 33° 9'; long. 95° 36'; mag. dec. 7° 51'.

Area, square miles, 666.

Population, 31,038.

Railroads, 2.

Miles of railroad, 69.96.

Assessed valuation of property of all kinds, \$8,513,830.

Mineral resources—Clays; lignite; mineral waters; petroleum; natural gas; gravel.

The lignite mined is represented by analyses of samples from the Como Coal Company, the Como Lignite Company and the Lone Star Lignite Mining Company, all at or near Como. The average of these analyses is as follows:

	Per	cent.
Moisture		32.67
Volatile combustible matter		36.47

	. P	er cent.
Fixed carbon		. 23.85
Ash		
, 		
,		100.00
Sulphur		. 0.61
British thermal units per pound		6,740

The red and brown-burning clays are represented by an analysis of a sample from Sulphur Springs, as follows:

	Per cent.
Silica	69.36
Alumina	
Oxide of iron	4.46
Lime	
Magnesia	
Soda	
Potash	
Titanic acid	
Water	
Organic matter	0.96
	99.88
Total fluxes	10.12

This clay became viscous at a temperature of 2,246 deg. F., and did not become steel hard at 2,102 deg. F.

Several years ago G. H. Wilson made, at Sulphur Springs, a whitish colored brick of the following qualities:

Weight per cubic foot, pounds	15.8
Per cent. of cells by volume	29.24
Volume of cells in 100 parts by weight	15.76
Pounds of water absorbed per cu. ft	18.24
Crushed at nounds per so inch.	2 750

HOUSTON COUNTY.

Location—East Texas; east of the Trinity river. County seat — Crockett; population, 3,947; elev. 350; lat.

 $31^{\circ}\ 19';\ long.\ 95^{\circ}\ 27';\ mag.\ dec.\ 8^{\circ}\ 0'$ (1911).

Area, square miles, 1,192. Population, 29,564.

Railroads, 3.

Miles of railroad, 53.

Assessed valuation of property of all kinds, \$9,079,375.

Mineral resources—Clays; iron ore; lignite; sandstone; natural gas; gravel.

The sandy brick clays are represented by an analysis of a sample from Hurricane Bayou, as follows:

	Pe	er cent.
Silica		
Alumina		
Oxide of iron		
Lime		
Magnesia		
Soda		
Potash		0.24
		99.78
Total fluxes	 	11.81

The iron ores of this county, so far as known, are too siliceous to come into use as a source of iron.

The lignite mined in this county is represented by analyses of samples from the Houston County Coal Company, Lovelady, and the Houston County Coal and Manufacturing Company, Crockett. The average of these analyses is as follows:

	$\mathbf{P}\epsilon$	er cent.
Moisture		. 30.87
Volatile combustible matter		
Fixed carbon		
Ash		10.26
Sulphur		
British thermal units, per lb		7,525

Natural gas from a locality 14 miles west of Crockett gave 913 B. t. u. per cubic foot.

HOWARD COUNTY.

Location—West Texas.

County seat—Big Springs; population, 4,102; elev. 2,397; lat. 32° 15′; long. 101° 28′; mag. dec. 10° 25′.

Area, square miles, 888.

Population, 8,881.

Railroads, 1.

Miles of railroad, 32.80.

Assessed valuation of property of all kinds, \$4,842,805. Mineral resources—Unknown.

HUNT COUNTY.

Location—Northeast Texas.

County seat—Greenville; population, 8,850; elev. 552; lat. 33° 7'; long. 96° 5'; mag. dec. 8° 46' (1912).

Area, square miles, 888.

Population, 48,116.

Railroads, 4.

Miles of railroad, 162.32.

Assessed valuation of property of all kinds, \$25,429,256.

Mineral resources—Clays; gravel.

The red and brown-burning clays are represented by an analysis of a sample from Greenville, as follows:

Pei	cent.
Silica	79.00
Alumina	11.38
Oxide of iron	2.44
Lime	0.50
Magnesia	0.20
Soda	0.65
Potash	0.35
Titanie acid	-0.78
Water	3.80
• · · · · · · · · · · · · · · · · · · ·	
` <u> </u>	99.00
Total fluxes	4.14

This clay became steel hard at a temperature of 2,246 deg. F.

HUTCHINSON COUNTY.

Location—About the center of the Panhandle.

County seat — Plemons; population, 100, elev. 2,800; lat. 35° 48'; long. 101° 18'; mag. dec. 11° 24'.

Area, square miles, 850.

Population, 892.

Railroads, none.

Assessed valuation of property of all kinds, \$1,313,980.

· Mineral resources—Unknown.

IRION COUNTY.

Location—West Texas.

County seat—Sherwood; population, 339; elev. 2,145; lat. $31^{\circ} 17'$; long. $100^{\circ} 48'$; mag. dec. $9^{\circ} 46'$.

Area, square miles, 800.

Population, 1,283.

Railroads, 1.

Miles of railroad, 41.73.

Assessed valuation of property of all kinds, \$2,312,611.

Mineral resources-Unknown.

JACK COUNTY.

Location-North Texas.

County seat—Jacksboro; population, 1,480; elev. 1,074; lat. 33° 13'; long. 98° 9'; mag. dec. 9° 18'.

Area, square miles, 858.

Population, 1,480.

Railroads, 2.

Miles of railroad, 69.46.

Assessed valuation of property of all kinds, \$7,058,130.

Mineral resources—Coal; limestone; clays; gravel; petroleum.

The coal resources of Jack county are well developed, but no mining operations are conducted there. The quality of the coal may be judged from analyses of samples from the Stewart Creek Coal Co., Jermyn, and from Lost Valley, as follows:

	Stewart Creek	
	Per ce	nt.
Moisture	. 10.24	10.28
Volatile combustible matter	. 34.28	25.49
Fixed carbon	. 35.02	55.10
Ash	. 20.46	9.13
	100.00	100.00
Sulphur	1.66	n. d.
British thermal units per lb.	. 9,434	n. d.

There are excellent limestones in Jack county suitable for building purposes, for road making, etc. The quality of the stone quarried by Risley Bros., Jacksboro, is shown by an average of a number of analyses and tests:

	Per	cent.
Silica		
Alumina		
Oxide of iron		1.54
Lime		51.81
Magnesia		0.48
Carbonic acid		
Loss on ignition		3.00
		00 77 4

99.74

A gray limestone from Risley Bros. had a crushing strength of 8,377 lbs. per square inch and a blue-gray stone 7,247 lbs. The gray stone weighed 162.29 lbs. per cu. ft. and absorbed 4.43 lbs. of water per cu. ft. The blue-gray stone weighed 162.91 lbs. per cu. ft. and absorbed 2.68 lbs. of water per cu. ft.

Another sample from the quarry had a weight of 165.4 lbs. per cu. ft., absorbed 0.94 lbs. of water per cu. ft. and crushed at 4.613 lbs. per sq. in.

A sample of limestone from J. W. Fox, Stewarton, had the following composition:

																ŀ			P	er	cent.	
													•	•				•	•		3.62	
																					3.46	
																					51.40	
																					None	
Ca	rboni	c	a	eid	ι.	•	•		•	٠	•	•									40.10	
																					98.58	

This stone weighed 165.54 lbs. per cu. ft., absorbed 0.96 lbs. of water per cu. ft., and crushed at 9,500 lbs. per sq. in.

A sample of limestone from this county was tested as road material by the United States Office of Public Roads, Washington, with the following results:

Weight	per cubic foot, pounds	165
Pounds	of water absorbed per cu. ft	1.63

This stone had the following composition:

Pe	er cent.
Silica	0.40
Alumina	0.05
Oxide of iron	2.57
Lime	
Magnesia	0.23
Carbonic acid	40.66
Loss on ignition	
· · · · · · · · · · · · · · · · · · ·	97.75

There are asphaltic sandstones in Jack county, but they have not been investigated.

A number of shallow oil wells 12 miles north of Jacksboro afford a fine lubricating oil. A refinery is to be built.

JACKSON COUNTY.

Location—Southeast Texas; borders on Lavaca Bay.

County seat—Edna; population, 1,144; elev. 72; lat. 28° 58′; long. 96° 40′; mag. dec. 8° 22′.

Area, square miles, 888.

Population, 6,471.

Railroads, 3.

Miles of railroad, 47.75.

Assessed valuation of property of all kinds, \$9,773,120.

Mineral resources—Clays.

The mineral resources of this county have not been investigated.

JASPER COUNTY.

Location—Southeast Texas; east of the Neches river.

County seat—Jasper; population, 473; elev. —; lat. 30° 55'; long. 93° 59'; mag. dec. 7° 19'.

Area, square miles, 977.

Population, 14,000.

Railroads, 5.

Miles of railroad, 146.20.

Assessed valuation of property of all kinds, \$10,852,720.

Mineral Resources—Asphalt rock; lignite; sandstone; gravel.

Per cent.

The asphaltic sandstone is found at the old tar well, $4\frac{1}{2}$ miles northeast of Rockland. Its composition is as follows:

Asphaltene	. 7.12
Petrolene	. 20.14
Silica	
Sulphur	. 0.24
	100.74
Total bitumen	. 27.26

Another deposit of similar character is found at Boykin's Spring, 3½ miles northeast of the tar well.

There is said to be some lignite in this county, but it has not been investigated.

The sandstones are used for rip-rap, etc., on a considerable scale. They occur in the northern part of the county and are quarried by D. M. Picton & Co., Beaumont. The crushing strength of these stones varies from 2,000 to 7,000 lbs. per sq. in.

JEFF DAVIS COUNTY.

Location—Trans-Pecos Texas.

County seat — Fort Davis; population, 1,061; elev. 4,927 (highest town in the State).

Area, square miles, 1,922.

Population, 1,678

Railroads, 2.

Miles of railroad, 30.51.

Assessed valuation of property of all kinds, \$4,193,766.

Mineral resources—Agate; copper ores; limestone; granite; trap rock.

The mineral resources of this county have not been thoroughly investigated, but copper ores are reported.

JEFFERSON COUNTY.

Location—Extreme southeast; borders on the Gulf of Mexico. County seat—Beaumont; population, 20,640; elev. 21; lat. 30° 5′; long. 94° 5′; mag. dec. 7° 24′.

Area, square miles, 1,109.

Population, 38,182.

Railroads, 6.

Miles of railroad, 139.53.

Assessed valuation of property of all kinds, \$49,276,544.

Mineral resources—Clays; natural gas; petroleum; gravel.

The red and brown-burning clays are represented by an analysis of a sample from near Beaumont, as follows:

	Pe	r cent.
Silica		77.97
Alumina		
Oxide of iron		
Lime		0.84
Magnesia		0.38
Soda		None
Potash		None
Titanic acid		1.23
Water		3.24
Sulphurie acid		0.51
		98.40
Total fluxes		4.41

This clay became steel hard at a temperature of 2,102 deg. F. The quality of the brick made is shown by the following tests

on samples from the Gulf States Brick Co. and the Beaumont Brick Co., several years old:

	1	2	3	4	5	6	7	8
Weight per cu. ft., lbs	33.90 19.63 21.16	31.13 17.44 19.44	27.20 14.74 16.98	28.71 16.98 17.91	32.47 19.01 20.26	31.75 19.47 19.82	110.8 31.42 17.69 19.60 3,546	30.59 18.27 19.09

- Gulf States Brick Co., Style D. P. No. 2, Red face.

- Gulf States Brick Co., Style D. P. No. 3, Red face. Gulf States Brick Co., Style D. P. No. 3, Red face. Gulf States Brick Co., Style No. 1, stiff mud, red. Gulf States Brick Co., Style No. 1, stiff mud, red. Gulf States Brick Co., Style speckle face, "Diana." Gulf States Brick Co., Style D. P. No. 1, brown face. Gulf States Brick Co., Style D. P. No. 5, red face.

- Beaumont Brick Company.

Jefferson is one of the important oil producing counties. bringing in of the great Lucas gusher, on Spindle Top, in January, 1901, was the beginning of the development of the oil fields of the Gulf Coastal Plain. Since that time the county produced, to the close of 1913, 40,709,220 barrels of oil, valued at \$15,043,553. The natural gas, found in association with the oil, is used locally.

JIM HOGG COUNTY.

Location—South Texas.

County seat—Hebbronville; population, 190; elev. 680.

Area, square miles, 1,099.

Population, — (included in Brooks and Duval Counties).

Railroads, 1.

Miles of railroad, 16.

Assessed valuation of property of all kinds, \$2,459,564.

Mineral resources—Clays.

The mineral resources of this county have not been investigated.

JIM WELLS COUNTY.

Location—South Texas.

County seat—Alice; population, 2,136; elev. 205.

Area, square miles, 868.

Population, 5,500 (estimated).

Railroads, 2.

Miles of railroad, 81.69.

Assessed valuation of property of all kinds, \$6,929,645.

Mineral resources—Clays.

The mineral resources of this county have not been investigated.

JOHNSON COUNTY.

Location—North of center.

County seat—Cleburne; population, 10,364; elev. 764; lat. 32° 20'; long. 97° 23'; mag. dec. 9° 11' (1910).

Area, square miles, 744.

Population, 34,460.

Railroads, 7.

Miles of railroad, 144.61.

Assessed valuation of property of all kinds, \$22,356,735.

Mineral resources—Clays.

The mineral resources of this county have not been investigated.

JONES COUNTY.

Location—Northwest of center.

County seat—Anson; population, 1,842; elev. 1,716; lat. 32° 45'; long. 99° 54'; mag. dec. 10° 25'.

Area, square miles, 900.

Population, 24,299.

Railroads, 6.

Miles of railroad, 105.42.

Assessed valuation of property of all kinds, \$12,191,525.

Mineral resources—Clays; limestone; copper ores.

The quality of the brick made is shown by the following tests on a sample from the Pioneer Brick Works, Stamford:

The limestone industry centers around Lueders, where A. C. Fox has operated a quarry for some years. The quality of the stone obtained here is shown by the following average of a number of analyses and tests:

	er?	cent.
Silica		
Alumina		
Oxide of iron		
Lime		
Magnesia		
Carbonic acid		
Loss on ignition		3.00
	-	
	1	00.52

The weight per cubic foot varies from 141.3 to 164.1 pounds, with an average of 154.2. The pounds of water absorbed per cubic foot varies from 1.60 to 7.87, with an average of 4.71. The crushing strength, in pounds per square inch, varies from 2,487 to 7,822, with an average of 4,258.

The copper ores of this county are Permian and have not been developed.

KARNES COUNTY.

Location—Southeast Texas.

County seat—Karnes City; population, 635; elev. 404; lat. 28° 55′; long. 97° 54′; mag. dec. 8° 35′.

Area, square miles, 740.

Population, 14,942.

Railroads, 1.

Miles of railroad, 44.02.

Assessed valuation of property of all kinds, \$10,658,244.

Mineral resources—Clays; lignite.

The mineral resources of this county have not been investigated

KAUFMAN COUNTY.

Location-Northeast Texas.

County seat—Kaufman; population, 1,959; elev. 439; lat- $32^{\circ} 35'$; long. $96^{\circ} 20'$; mag. dec. $8^{\circ} 12'$.

Area, square miles, 932.

Population, 35,323.

Railroads, 3.

Miles of railroad, 97.58.

Assessed valuation of property of all kinds, \$19,188,184.

Mineral resources—Clays; mineral waters; limestone; natural gas.

The mineral resources have not been thoroughly investigated. A sample of siliceous limestone from near Chief was examined in the laboratory of the Office of Public Roads, Washington, with the following results:

Weight	per	cubic	foot.	pounds		 162
					cu. ft	1.63

Its chemical composition was as follows, analysis by J. E. Stullken, Bureau of Economic Geology, University of Texas:

]	P	er	cent.
Silica						28.60
Alumina						11.48
Oxide of iron						2.42
Lime						28.39
Carbonic acid						24.30
Loss on ignition						
-					_	
					1	00.09

KENDALL COUNTY.

Location—South of center.

County seat—Boerne; population, 886; elev. 1,405.

Area, square miles, 613.

Population, 4,517.

Railreads, 2.

Miles of railroad, 40.

Assessed valuation of property of all kinds, \$3,709,981.

Mineral resources—Clays; limestone; gravel.

The mineral resources have not been investigated.

KENT COUNTY.

Location—Northwest Texas.

County seat—Clairemont; population, 150; elev. 2,127; lat. 33° 10'; long, 100° 45'; mag. dec. 10° 21'.

Area, square miles, 777.

Population, 2,655.

Railroads, 1.

Miles of railroad, 17.21.

Assessed valuation of property of all kinds, \$2,375,317.

Mineral resources—Unknown.

KERR COUNTY.

Location—Southwest of the center.

County seat—Kerrville; population, 1,834; elev. 1,645; lat. 30° 1'; long. 99° 8'; mag. dec. 8° 39'.

Area, square miles, 1,210.

Population, 5,505.

Railroads, 1.

Miles of railroad, 18.35.

Assessed valuation of property of all kinds, \$4,218,010 (includes 45 sq. mi. now in Real county).

Mineral resources—Clays; limestone; petroleum.

The mineral resources have not been investigated. High grade petroleum, in small amounts, have been found on the James Spicer ranch, northwest of Kerrville.

KIMBLE COUNTY.

Location—Southwest of center.

County seat—Junction City; population, 536; lat. 30° 29'; long. 99° 53'; mag. dec. 9° 17'.

Area, square miles, 1,302.

Population, 3,261.

Railroads, none.

Assessed valuation of property of all kinds, \$2,634,286.

Mineral resources—Clays; limestone.

The mineral resources have not been investigated.

KING COUNTY.

Location—Northwest Texas.

County seat — Guthrie; population, 160; elev. ——; lat. 33° 37'; long. 100° 19'; mag. dec. 10° 55'.

Area, square miles, 928.

Population, 810.

Railroads, none.

Assessed valuation of property of all kinds, \$1,768,098.

Mineral resources—Clays; gypsum.

The mineral resources have not been investigated. The copper ores are Permian and have not been developed.

KINNEY COUNTY.

Location—Southwest Texas.

County seat—Brackettsville; population, 925; elev. 1,100; lat. 29° 19′; long. 100° 25′; mag. dec. 9° 19′.

Area, square miles, 1,269.

Population, 3,401.

Railroads, 1.

Miles of railroad, 50.57.

Assessed valuation of property of all kinds, \$4,592,800.

Mineral resources—Clays; limestone.

The mineral resources have not been investigated.

KLEBERG COUNTY.

Location-South Texas.

County seat—Kingsville; population, 975; elev. 66.

Area, square miles, 1,012.

Population (included in that for Nueces county).

Railroads, 1.

Miles of railrod, 21.

Assessed valuation of property of all kinds, \$6,578,394.

Mineral resources—Clays.

The mineral resources have not been investigated.

KNOX COUNTY.

Location-Northwest Texas.

County seat—Benjamin; population, 400; elev. 1,456.

Area, square miles, 947.

Population, 9,625.

Railroads, 2.

Miles of railroad (1913), 43.89.

Assessed valuation of property of all kinds, \$6,259,477.

Mineral resources—Clays; copper ores; gypsum; sandstone.

The mineral resources have not been thoroughly investigated. The copper ores are Permian and have not been developed.

LAMAR COUNTY.

Location—Northeast Texas; borders on the Red river. County seat—Paris; population, 11,269; elev. 565; lat. 33° 41'; long. 95° 35'; mag. dec. 8° 4'.

Area, square miles, 903.

Population, 46,544.

Railroads, 5.

Miles of railroad (1913), 97.

Assessed valuation of property of all kinds, \$26,815,985.

Mineral resources—Clays; limestone, mineral waters; gravel. The red and brown-burning clays are represented by the average of two analyses of samples from Paris, as follows:

	Per	cent.
Silica		65.60
Alumina		18.87
Oxide of iron		2.77
Lime		0.17
Magnesia		1.47
Soda		1.67
Potash		0.68
Titanic acid		2.05
Sulphuric acid		1.16
Water		5.26
	_	
Total fluxes		99.70
Total fluxes		6.77

These clays became viscous at a temperature of about 2,300 deg. F.

The quality of the brick made in this county is given by the following tests on a sample from Paris, several years old:

Weight per cubic foot, pounds	120.6
Per cent. of cells by volume	22.97
Volume of cells in 100 parts by weight	
Pounds of water absorbed per cu. ft	14.32
Crushed at, pounds per sq. inch	

The composition of the mineral water from the Blossom Mineral Water Company, Blossom, is as follows:

	Grains per U.S. Gal.
Silica	2.45
Iron	0.023
Calcium	28.69
Magnesium	6.65
Sodium and Potassium	55.99
Carbonate radicle (CO ₃)	None
Bicarbonate radicle (HCO ₃)	6.18
Sulphate radicle (SO ₄)	189.01
Chlorine	5.19
	 .
Total solids	296.78

This analysis was marked, "Government Analysis."

LAMB COUNTY.

Location—Northwest Texas; south of the Panhandle. County seat—Olton; population, 150; elev. 3,615.

Area, square miles, 1,021.

Population, 540.

Railroads, 1.

Miles of railroad, 32.81.

Assessed valuation of property of all kinds, \$3,187,014.

Mineral resources—Unknown.

LAMPASAS COUNTY.

Location—Center of the State.

County seat—Lampasas; population, 2,119; elev. 1,025; lat. 31° 1′; long. 98° 10′; mag. dec. 8° 36′.

Area, square miles, 755.

Population, 9,532.

Railroads,

Miles of railroad, 57.98.

Assessed valuation of property of all kinds, \$6,975,710.

Mineral resources—Celestite (sulphate of strontium); clays; limestone; sandstone; petroleum.

The mineral resources have not been fully investigated. Fine samples of celestite are found near Lampasas and Lometa. Many varieties of limestone occur. At any near Chaddick's Mill, on the Colorado river, west of Lometa, there are heavy exposures of a medium and fine grained gray sandstone of the following composition and qualities:

	•	
Silica		85.20
Alumina		
Oxide of iron		4.68
Lime		1.09
Carbonic acid		1.10
Loss on ignition		0.30
		100.19
Weight per cubic foo	t. pounds	137.30
Pounds of water absor		
Crushed at, pounds pe		

In the southwestern part of the county a little petroleum has been found at shallow depths.

LA SALLE COUNTY.

Location—South Texas.

County seat — Cotulla; population, 1,880; elev. 442; lat. 27' long. 99° 14'; mag. dec. 8° 51'.

Area, square miles, 1,770.

Population, 4,747.

Railroads, 3.

Miles of railroad, 91.50.

Assessed valuation of property of all kinds, \$4,854,480 (unofficial).

Mineral resources—Clays; gravel.

LAVACA COUNTY.

Location-Southeast Texas.

County seat—Hallettsville; population, 1,379; elev. 232; lat. 29° 27'; long. 96° 57'; mag. dec. 8° 35'.

Area, square miles, 992.

Population, 26,418.

Railroads, 1.

Miles of railroad, 60.40.

Assessed valuation of property of all kinds, \$17,229,373.

Mineral resources—Clays; sandstone; mineral waters; gravel. At Moulton, the Moulton Sandstone Company has operated a good sandstone quarry for a number of years. The composition of this stone is given by the average of two analyses, as follows:

Per ce	nt.
Silica	.10
Alumina 2	.29
Oxide of iron 0.	.93
Lime 0	.44
Magnesia 1	.03
Soda 4	.67
	.04
Carbonic acid 0	.35
Sulphuric acid 0	.75
Loss on ignition 1	.03
99	.63

The average quality of this stone, as determined by several tests, is as follows:

Weight per cubic foot, pounds	.137.80
Pounds of water absorbed per cu. ft	
Crushed at, pounds per sq. inch	. 4,311

The absorption of water, in pounds per cubic foot, varied from 3.28 to 14.89. The crushing strength, in pounds per square inch, varied from 2,400 to 8,791.

Composition of water from St. Mary's Mineral Well, Halletts-ville:

, 7		Grains per U. S. Gal
Calcium Calcium Magnesi Sodium	sulphate bicarbonate chloride um chloride chloride bicarbonate	 37.30 31.13 190.20 40.40
		511.40

LEE COUNTY.

Location-Southeast of center.

County seat — Giddings; population, 1,375; elev. 512; lat. $30^\circ~10'$; long. $96^\circ~57'$; mag. dec. $8^\circ~34'~(1912)$.

Area, square miles, 666.

Population, 13,132.

Railroads, 2

Miles

sample 2.

ty of all kinds, \$6,631,660. nite; gravel.

presented by an analysis of a llows:

	A	Per cent.
Silica		81.50
Alumin		5.43
Oxide of iron		
Lime		
Magnesia		
Soda		
Potash		
Titanic acid		
Water		4.00
		99.00
Total fluxes		7 90

This clay did not burn steel hard at a temperature of 2,246 deg. F.

The lignite from this county is represented by analyses of samples from Hicks and from Blue Branch, as follows:

Hicks. Moisture	Blue Branch. 16.50
Volatile combustible matter. 44.75 Fixed carbon	$\begin{array}{c} 36.07 \\ 37.17 \end{array}$
Ash 8.75	10.26
100.00	100.00
Sulphur 0.63	1.66
British thermal units per pound	9,774

These analyses do not represent the freshly mined lignite as it is probable that the moisture content would be about 30 per cent.

CHAPTER IV.

DISCUSSION OF COUNTIES—Continued.

Leon-Rusk.

LEON COUNTY.

Location—East of center; west of the Trinity river.

County seat—Centerville; population, 400; lat. 31° 15'; long. 95° 59'; mag. dec. 8° 31' (1911).

Area, square miles, 1,066.

Population, 16,583.

Railroads, 3.

Miles of railroad, 110.99.

Assessed valuation of property of all kinds, \$8,110,567.

Mineral resources—Clays; lignite, gravel.

The clays have not been investigated. The lignite industry is well conducted at and near Jewett by the Bear Grass Coal Co. and the Houston County Coal & Manufacturing Co. The average composition of the lignites of this county is given in the following rnalysis:

Moisture	Per	Cent.
Moisture		27.91
Volatile combustible matter		35.81
Fixed carbon		25.89
Ash		10.39
	1	00.00
Sulphur		0.82
British thermal units, per pound		7,136

LIBERTY COUNTY.

Location-Southeast Texas.

County seat—Liberty; population, 980; elev. 30; lat. 30° 4'; long. 94° 48'; mag. dec. 7° 42'.

Area, square miles, 1,162.

Population, 10,686.

Railroads, 5.

Miles of railroad, 120.37.

Assessed valuation of property of all kinds, \$9,181,455.

Mineral resources—Clays; petroleum; natural gas; gravel.

The clays have not been investigated. The natural gas from oil wells is used locally. The oil fields came into production in 1905 and yielded, to the close of 1913, 328,136 barrels of oil, valued at \$199,235.

LIMESTONE COUNTY.

Location-Northeast of center.

County seat—Groesbeck; population, 1,454; elev. 477; lat. 31° 31′; long. 96° 31′; mag. dec. 8° 36′.

Area, square miles, 987.

Population, 34,621.

Railroads, 3.

Miles of railroad, 82.75.

Assessed valuation of property of all kinds, \$15,438,450.

Mineral resources—Clays; lignite; limestone; natural gas; gravel.

The pottery clays are represented by an analysis of a sample from near Headsville, as follows:

Silica Per	Cent.
Silica	70.82
Alumina	18.90
Oxide of iron	0.40
Soda	0.50
Titanic acid	2.10
Water	6.80
- -	
	99.52
Total fluxes	0.90

This clay became steel hard at a temperature of 2,246 deg. F. The fire-clay is represented by an analysis of a sample from near Headsville, as follows:

Silica	'er	Cent.
Alumina		15.7
Oxide of iron		0.7
Titanic acid		0.7
Water		5.7
	_	
		100.2
Total fluxes		0.70

The lignite from Head's Prairie gave:

Moist	are												P	e:	Cent.
Volati	le com	busti	ble	m	att	er.									42.00
	carbon														
				•	• •	• • •	•	•	 •	-	Ī			_	100.00

The limestones are worked at Tehuacana by the Mexia Quarry Company. Several analyses and tests of this stone have been made, as follows:

	P	er Cent
	Gray.	Soft Yellow
Silica	4.80	5.50
Alumina	1.29	1.67
Oxide of iron	1.35	1.53
Lime	50.02	48.69
Carbonic acid	39.40	37.00
Loss on ignition	2.70	5.00
	99.56	99.39
Weight per cu. ft. pounds		127.0
Pounds of water absorbed per cu. ft	2.76	13.4
Crushed at, pounds per sq. inch.	6,222	5,555

Another sample gave:

Weight per cu. ft. pounds	.168.48
Pounds of water absorbed per cu. ft	. 0.59
Crushed at, pounds per sq. inch	.10.140

Stone from Tehuacana has been tested by the United States Office of Public Roads, Washington, with the following results:

Weight	per	cubic	foot,	pounds	s		169
Pounds	of v	vater	absorb	ed per	cu. ft.		2.28

The composition of this sample, as determined in the laboratory of the Bureau of Economic Geology and Technology by J. E. Stullken, is as follows:

										Cent.
Silica	 					 				5.40
Alumina										
Oxide of iron					Ċ.	 				1.67
Lime	 	 								44.79
Carbonic acid .	 	 								36.60
Loss on ignition	 	 								4.96
									1	00.75

A good quality of natural gas occurs in large volumes near Mexia, and it is piped to Teague, Corsicana and Waco, the total mileage being 85.

LIPSCOMB COUNTY.

Location—Northeast corner of the Panhandle; borders on Oklahoma.

County seat—Lipscomb; population, 110; lat. 36° 15'; long. 100° 15'; mag. dec. 11° 9'.

Area, square miles, 850.

Population, 2,634.

Railroads, 1.

Miles of railroad, 10.84.

Assessed valuation of property of all kinds, \$3,616,250.

Mineral resources-Unknown.

LIVE OAK COUNTY.

Location-South Texas; traversed by the Nueces river.

County seat—Oakville; population, 431; elev. 90.

Area, square miles, 1,123.

Population, 3,442.

Railroads, 1.

Miles of railroad, 50.

Assessed valuation of property of all kinds, \$4,393,860.

Mineral resources—Clays; gravel.

LLANO COUNTY

Location—Near center; traversed by the Llano river; west of the Colorado river.

County seat — Llano; population, 1,687; elev. 1,029; lat. 30° 44′; long. 98° 41′; mag. dec. 9° 24′.

Area, square miles, 977.

Population, 6,520.

Railroads, 1.

Miles of railroad, 20.36.

Assessed valuation of property of all kinds, \$6,604,840.

Mineral resources—Amethyst; bat guano; dolomite; gold; granite; graphite; iron ores; pearls; serpentine; rare minerals, such as fergusonite, gadolinite, gummite, mackintoshite, nivenite, rolandite, thorogummite; limestone; marble; sandstone, granite, gravel.

While the mineral resources of Llano county are of a diversified character, very little is being done towards their development. The only mineral product now marketed is granite. Many attempts have been made to mine gold ore, but no returns are now available as to the success attained. The same remark applies to the copper ores. A good quality of graphite occurs along the line of the Austin & Northwestern Ry., near Graphite Station, but it has not been developed.

Excellent iron ores occur at Iron Mountain, about 12 miles northwest of Llano, at the old Olive mine, and elsewhere, but it has been many years since any shipment was made.

Some Llano county iron ore was used by the Sloss Steel & Iron Company, Birmingham, Alabama, and a little by the State Furnace at Rusk, Cherokee County. The ores are high grade hematites, magnetites and limonites, the two former occurring among the granites and gneisses and the latter in limestone. The hematites and magnetites carry from 60 to 65 per cent of iron and appear to be lenticular in form. With the exception of the old Olive mine, these deposits lie from 10 to 15 miles away from transportation.

The deposit of rare minerals at Barringer Hill has not been worked for several years.

Llano county has many excellent deposits of limestone and sandstone and some of the marble appears to be of fine texture and quality, but no quarries are in operation.

This county has long been famous for the excellent quality of its gray granite and several quarries are in commission. The Federal Building in Kansas City, Missouri, was partly constructed of a gray granite which occurs alamost within the limits of the town of Llano.

The composition of a sample of gray granite from Bradshaw's quarry was as follows:

Per	
Siliea	
Alumina	
Peroxide of iron	
Protoxide of iron	
Lime	
Magnesia	
Soda	
Potash	2.90

		cent.
Phosphoric acid		0.06
Water	• • •	0.70
	1	00.40
Weight per cubic foot, pounds	1	67.23
Pounds of water absorbed per cubic for		
Crushed at nounds ner square inch.	1	0.060

A sample of gray granite from Teich's quarry had the following composition:

Per Cent. Silica 72.80 Alumina 15.40 Peroxide of iron 2.15 Protoxide of iron 0.40 Lime 1.60 Magnesia 1.00 Soda 2.70 Potash 2.30 Phosphoric acid 0.05
Water 0.45
98.85
Weight per cubic foot, pounds

A sample of medium grained red granite from Teich's quarry had the following composition:

	er Cent.
Silica	. 78.00
Alumina	. 1.23
Peroxide of iron	. 1.30
Lime	. 0.15
Magnesia	. 0.60
Soda	. 3.40
Potash	. 4.34
Phosphoric acid	. 0.04
Water	. 0.20
•	
	100.38
Weight per cubic foot, pounds	.163.49
Pounds of water absorbed per cubic foot	. 0.48
Crushed at, pounds per square inch	

Beginning about 3 miles northeast of Llano and continuing for several miles in a northeasterly direction, there is a heavy exposure of a fine-grained, dense and extremely hard feldspar porphyry which has been termed "opal granite" from the numerous inclusions of a bluish quartz in small oval pieces. It is difficult to cut and polish, but makes a very handsome and durable stone. Its composition is as follows:

Silica 74.90 Alumina 11.10 Peroxide of iron 1.60 Protoxide of iron 1.50 Manganese dioxide 1.90 Lime 0.20)
Soda 8.50	_
Titanic acid	
Water 0.30)
100.50)
Weight per cubic foot, pounds	9

Among petrographers this stone is known as llanite.

A medium grain red granite proposed to be crushed and used as road material and concrete had a crushing strength of 11,800 pounds per square inch. A sample of granite from Kramer's quarry had a crushing strength of 8,888 pounds per square inch.

LOVING COUNTY (UNORGANIZED).

Location—West Texas; south of New Mexico; east of the Pecos river.

County seat--

Area, square miles, 873.

Population, 249.

Railroads, none.

Assessed valuation of property of all kinds, \$384,887.

Mineral resources—Unknown.

LUBBOCK COUNTY.

Location-Northwest Texas.

County seat—Lubbock; population, 1,938; elev. 3,148; lat. 33° 36'; long. 101° 52'; mag. dec. 10° 36'.

Area, square miles, 982.

Population, 3,624.

Railroads, 2.

Miles of railroad, 59.79.

Assessed valuation of property of all kinds, \$4,971,301.

Mineral resources-Unknown.

LYNN COUNTY.

Location-Northwest Texas.

County seat—Tahoka; population, 575; elev. 3,043.

Area, square miles ,821.

Population, 1,713.

Railroads, 1.

Miles of railroad, 35.48.

Assessed valuation of property of all kinds, \$2,082,007.

Mineral resources-Unknown.

McCULLOCH COUNTY.

Location—West of center; south of the Colorado river.

County seat — Brady; population, 2,669; elev. 1,670; lat. 31° 8'; long. 99° 21'; mag. dec. 9° 42'.

Area, square miles, 1,100.

Population, 13,405.

Railroads, 2.

Miles of railroad, 70.98.

Assessed valuation of property of all kinds, \$7,529,916.

Mineral resources—Coal; natural gas; limestone; petroleum; sandstone; gravel.

The mineral resources have not been fully investigated. The Central Coal Fields cross the Colorado river and come into this county, but no mines are in operation. Petroleum and natural gas occur in the county, but have not been developed to much extent.

Good lubricating oil occurs in comparatively shallow wells near Lohn, northwest of Brady.

McLENNAN COUNTY.

Location—Northeast of center.

County seat—Waco; population, 26,425; elev. 414; lat. 31° 36'; long. 97° 8'; mag. dec. 8° 24'.

Area, square miles, 1,080.

Population, 73,250.

Railroads, 8.

Miles of railroad, 224.84.

Assessed valuation of property of all kinds, \$54,701,370.

Mineral resources—Clays; limestone; petroleum; gravel.

The red and brown-burning clays are represented by an analysis of a sample from Waco, as follows:

	Per Cent.
Silica	72.36
Alumina	7.84
Oxide of iron	1.72
Lime	6.48
Magnesia	2.23
Soda	1.70
Potash	1.20
Titanic acid	0.12
Water	3.72
Carbonic acid	3.30
	100.67
Total fluxes	13.33

This clay became steel hard somewhat above 2,102 deg. F.
The calcareous brick clays are represented by an analysis of
a sample from East Waco, as follows:

		Per	cent.
Silica	 		71.40
Alumina			8.20
Oxide of iron .	 		2.30
Lime	 		6.34
Magnesia	 		2.44
Soda	 		1.60
Potash	 		1.22
Titanic acid	 		0.14
Water	 		3.70
Carbonic acid .	 		3.25
	* .	-	100.50
Total fluxes			14.90
Point of fusion	 	2,138 I	Deg. F.

The brick made are represented by tests made on samples received from F. A. Harris, Waco, as follows:

S	tiff mud.	No marks.
Weight per cu. ft. pounds	122.8	131.7
Per cent. of cells by volume	13.94	17.69
Volume of cells in 100 parts by weight		8.38
Pounds of water absorbed per cu. ft	8.69	11.00
Crushed at, pounds per sq. inch	1,898	6,000

The oil resources have not been developed, although a high paraffin oil was found by Wm. L. Prather, of Waco, in 1890, on the Bosque, at a depth of 265 feet. This was the first discovery of oil in the central part of the State, antedating the Navarro (Corsicana) field by nearly four years. The existence of a paraffin oil 54 miles west of south from Corsicana, although

at a shallow depth, is a noteworthy fact, and one that should long since have induced systematic drilling.

A sample of limestone from Crawford had the following composition:

4.4		Per cent.
Silica		Trace
Alumina		0.60
Oxide of iron		Trace
Lime		55.60
Carbonic acid		
		100.08
Weight of a cubic foot, pounds	· · · · ·	158.49
Pounds of water absorbed per cu	u. ft.	9.1
Crushed at, pounds per square in	ich .	3.180

This is the purest limestone that has been found in the State.

McMULLEN COUNTY.

Location—South Texas; traversed by the Nueces river. County seat—Tilden; population, 506.

Area, square miles, 1,180.

Population, 1,091.

Railroads, 1.

Miles of railroad, 16.

Assessed valuation of property of all kinds, \$2,331.997.

Mineral resources—Clays; lignite; natural gas; petroleum; gravel.

The clays have not been investigated. On the R. S. Franklin ranch, along the San Miguel river, southwest of Christine, there is a large deposit of a fine white clay closely resembling the white clay found near Gonzales, Gonzales county.

Lignite occurs on and near the San Miguel river, in the vicinity of the iron bridge on the road from Pleasanton to Tilden. Some prospecting work has been done here, but no mines have been operated. The seam, as exposed, runs to about five feet in thickness and appears to be of fair quality.

Natural gas bubbles up through the San Miguel river on the Franklin ranch, southwest of Christine.

In the northeast part of the county, at Crowther, there is an oil and gas field of considerable promise. Several wells have been sunk and storage tanks provided. A sample of natural gas from Crowther carried 947 British thermal units per cubic foot. It is used locally.

MADISON COUNTY.

Location—East of the center; between the Navasota and the Trinity rivers.

County seat—Madisonville; population, 1,000; lat. 30° 57'; long. 95° 55′; mag. dec. 8° 11′.

Area, square miles, 488,

Population, 10,318.

Railroads, 4.

Miles of railroad, 34.17.

Assessed valuation of property of all kinds, \$4,694.670.

Mineral resources—Clays; gravel.

The mineral resources have not been investigated.

MARION COUNTY.

Location-Northeast Texas; borders on Louisiana.

County seat — Jefferson; population, 2,515; elev. 191; lat. 32° 46′; long. 94° 21′; mag. dec. 7° 31′.

Area, square miles, 384.

Population, 10,472.

Railroads, 4.

Miles of railroad, 48.35.

Assessed valuation of property of all kinds, \$3,962,294.

Mineral resources—Clays; iron ore; lignite; limestone; natural gas; petroleum; sandstone; pearls; gravel.

The clays are represented by three analyses, as follows:

	1	2	3
Silica	62.40	58.20	76.00
Alumina	20.66	23.97	9.45
Oxide of iron	8.54	4.43	4.75
Lime	0.40	None	${f Trace}$
Magnesia	Trace	None	None
Soda	7.77	5.02	4.00
Potash	1.12	2.09	2.00
Water		5.36	4.70
Total	100.89	99.07	100.90
Total fluxes	17.83	11.54	10.75

- Thomas Ferrell's bank, A. Richardson headright.
- W. C. Hill, on Daingerfield road. J. Higgins' yard, near Jefferson.

Lignite occurs on Big Cypress creek and on the north side of Caddo Lake, but the seams, as exposed, are thin. No analysis

can be quoted. It is said that in a deep well at Jefferson three beds of brown coal were penetrated.

Petroleum and natural gas occur in and around Caddo Lake, and these fields appear to be the westward continuation of the Caddo and Oil City fields in Louisiana. To the close of 1913 Marion county had produced 553,366 barrels of oil, valued at \$494,744.

Some good pearls have been found in Caddo Lake.

Aside from the possibilities in oil and gas, the principal mineral resource of Marion county is the large deposits of brown iron ore (limonite) that occur in the northwestern part of the county, at Lasater, Orr's Switch, near Ore City, etc.

During the last eighteen months considerable shipments have been made to Philadelphia, the ore, as per cargo sampling, carrying about 55 per cent in iron, without washing or calcining. A standard-gauge railroad, more than thirty miles in length, has been constructed from Longview to and beyond Ore City. An iron ore dock, capable of handling 3,500 to 4,000 tons of ore per day, has been built by the Gulf, Colorado & Santa Fe Railway, at Port Bolivar, Galveston Bay, and coastwise shipments have been made from the deposits near Ore City.

In common with practically all of the brown ores in this part of the State, the deposits in Marion county appear to be of blanket form. They occur on and near the tops of the hills and ridges, the topography of the region being extremely favorable to the construction of railroad lines for opening and working the beds. For the most part the cover (over-burden) is light and consists of soil, earth and sandy, friable clays. Ores carrying from 50 to 55 per cent in iron can be mined and loaded for 75 to 85 cents a ton. The all-rail rate to tidewater is \$1.00 a ton.

The iron furnace at Jefferson was built in 1889-90. It was 60x12 feet and was blown in March, 1891. It was a charcoal furnace and had an annual capacity of 13,500 tons. It has not been in operation for some years. The carwheel iron produced had a good reputation, being made from local ores. The rolling mill, built in 1891, has long since been dismantled. The iron ore area in the county may be taken at 27 square miles.

MARTIN COUNTY.

Location—West Texas.

County seat—Stanton; population, 650; elev. 2,654.

Area, square miles, 900.

Population, 1,549.

Railroads, 1.

Miles of railroad, 12.58.

Assessed valuation of property of all kinds, \$2,603,143.

Mineral resources—Unknown.

MASON COUNTY.

Location—Southwest of center; traversed by the Llano river. County Seat—Mason; population, 1,137; elev., 1450; lat. 30° 45′; long. 99° 14′; mag. dec. 9° 58′.

Area, square miles, 968.

Population, 5,683.

Railroads, none.

Assessed valuation of property of all kinds, \$4,522,020.

Mineral resources—Clays; granite; graphite; iron ore; manganese ore; mica; tin ore (reported); topaz; gravel.

Owing to the fact that there is no railroad in this county, the mineral resources have not received much attention. There has been no development in the county. Good manganese ore is found at the old Spiller mine, east of the town of Mason.

Some good iron ore is known to occur in the county, and it is of the same general character as that of Llano county. A variety of iron ore new to the State has recently been found in Mason. It is of a deep purple color, somewhat greasy to the feel, and is a typical hematite. It is comparatively soft and would make a high-grade and permanent iron paint when properly ground in oil. The composition of this ore is as follows:

	cent.
Silica	10.68
Alumina	
Metallic iron	54.60
Lime	0.59
Sulphuric acid	
Loss on ignition	

In the northeast part of the county, near Pontotoc, prospecting for mica has been carried on of late, and some good material 12-Min.

has been found. The occurrence of tin ore on Herman and Willow creeks was reported several years ago, but no vein or other deposit has been located.

The granites of the county are similar to those of Llano and Burnet counties.

Near Streeter, a little south of west from Mason, a beautiful variety of white and faintly bluish topaz is found, which has been cut and placed on the market. No typical straw-colored topaz has been found. It is reported that a few good pearls have been found in the Llano River, but the industry is of a sporadic character. Such pearls as have been obtained came from Unios (fresh water mussels).

MATAGORDA COUNTY.

Location—Southeast Texas; borders on the Gulf of Mexico. County seat—Bay City; population, 3,156; elev. 55 lat. 28° 59′; long. 95° 55′; mag. dec. 8° 7′.

Area, square miles, 1,135.

Population, 13,594.

Railroads, 4.

Miles of railroad, 156.96.

Assessed valuation of property of all kinds, \$16,172,645.

Mineral resources—Clays; natural gas; petroleum; salt.

The clays have not been investigated. The natural gas, found in association with petroleum, is used locally.

The oil fields came into production in 1904 and to the close of 1913 yielded 2,219,995 barrels of oil, valued at \$1,403,862.

As this county borders on the Gulf of Mexico and lies well within the coastal plain, it is probable that other oil fields will be discovered, together with commercial supplies of natural gas.

The quality of the brick made in this county is shown by tests on samples received from the Bay City Brick & Tile Co., Bay City, as follows:

	Graham	Gulf Coast
	Face.	Common.
Weight per cu. ft., lbs	.115.80	116.90
Per cent. of cells by volume	. 26.60	27.90
Volume of cells in 100 parts, by weight.	. 14.34	14.90
Pounds of water absorbed per cu. ft	. 16.60	17.41
Crushed at, pounds per square inch	. 2,424	1,431

MAVERICK COUNTY.

Location—Southwest Texas; borders on the Rio Grande. County seat—Eagle Pass; population, 3536; elev. 735; lat.

28° 44′; long. 100° 30′; mag, dec. 9° 28′.

Area, square miles, 1,332.

Population, 5,151.

Railroads, 1.

Miles of railroad, 28.47.

Assessed valuation of property of all kinds, \$6,132,661.

Mineral resources—Clays; coal; natural gas; gravel.

The clays have not been investigated.

From the Fleming and Davidson well, at depth of 712 feet, a good flow of natural gas was encountered. The sample examined gave 300 B. t. u. per cubic foot, and contained an unusual amount of nitrogen.

Much coal has been mined in this county by the International Coal Mines Co. and the Olmos Coal Co. This latter company operates the only coal washing plant in the State. The average composition of the coal mined in this county is given by the following analyses:

	International Coal Mines Co.	Olmos Coal Company, Lump.
	Per cent.	Per cent.
Moisture	4.85	8.83
Volatile combustible matter	38.30	32.68
Fixed carbon	46.30	44.89
Ash	10.55	13.60
	100.00	100.00
Sulphur	2.04	0.90
B. t. u. per pound	11,128	10.941

During the months of September and October, 1911, 800 tons of International coal were sold to Fort Sam Houston, San Antonio. It had the following average composition:

	\mathbf{Per}	cent.
Moisture		2.15
Volatile combustible matter		33.10
Fixed carbon		57.25
Ash		7.50
	1	100.00
Sulphur		1.25
B. t. u., per pound	1	13,591

MEDINA COUNTY.

Location—South of center.

County seat—Hondo; population, 1,325; elev. 887; lat. 29° 19'; long. 99° 5'; mag. dec. 8° 43'.

Area, square miles, 1,284.

Population, 13,415.

Railroads, 2.

Miles of railroad, 55.87.

Assessed valuation of property of all kinds, \$11,251,455.

Mineral resources—Clays; lignite; natural gas; petroleum; gravel.

The calcareous brick clays are represented by an analysis of a sample from near D'Hanis, as follows:

		rei cent.
Silica	. 	51.12
Alumina		11.04
Oxide of iron		4.10
Lime	. .	14.24
Magnesia		0.90
Soda		
Potash		0.40
Titanic acid	· • · · · · · · · · ·	0.95
Water		
Carbonic acid		10.62
		98.97
Total fluxes		\dots 21.23

This clay became viscous at a temperature of 2,102 degrees F. The quality of the brick made in this county is shown by the following tests on a sample received from the D'Hanis Brick & Tile Co.:

Weight per cubic foot, pounds	122.6
Per cent. of cells by volume	11.58
Volume of cells in 100 parts by weight	5.89
Pounds of water absorbed per cubic foot	7.22
Crushed at, pounds per square inch	3,340

A considerable amount of lignite is mined in Medina county, near Lytle. The following average analyses give the quality:

Moisture	35.07 28.16	41.49
Sulphur		$ \begin{array}{r} \hline 100.00 \\ 0.87 \\ 7.846 \end{array} $

Some natural gas and petroleum have been found in wells drilled near Dunlay, but no production is credited.

MENARD COUNTY.

Location-West of center.

County seat — Menard; population, 450; elev. 1,870; lat. 30° 54′; long. 99° 51′; mag. dec. 8° 40′.

Area, square miles, 888.

Population, 2,707.

Railroads, 1.

Miles of railroad, 15.85,

Assessed valuation of property of all kinds, \$2,584,055.

Mineral resources—Unknown.

MIDLAND COUNTY.

Location-West Texas.

County seat-Midland; population, 2,192; elev. 2,769.

Area, square miles, 972.

Population, 3,464.

Railroads, 1.

Miles of railroad, 26.51.

Assessed valuation of property of all kinds, \$5,734,287.

Mineral resources-Unknown.

MILAM COUNTY.

Location—Southeast of center.

County seat — Cameron; population, 3,263; elev. 390; lat. 30° 52'; long. 96° 58'; mag. dec. 8° 18'.

Area, square miles, 1,044.

Population, 36,780.

Railroads, 3.

Miles of railroad, 107.10.

Assessed valuation of property of all kinds, \$19,574,487.

 $\label{limiteral} \mbox{Mineral resources--Clays}; \ \mbox{lignite}; \ \mbox{gravel}; \ \mbox{petroleum}.$

The buff-burning semi-refractory clays are represented by the following average of three analyses of samples from near Rock-dale:

	Per	cent.
Silica		69.33
Alumina		19.38
Oxide of iron	.	1.07
Lime		0.87
Magnesia		0.86
Soda		0.12
Potash		Trace
Titanic acid		1.40
Water		5.46
	-	
		98.49
Total fluxes		2.87

The red and brown-burning clays are represented by an analysis of a sample from near Rockdale, as follows:

		Per cent.
Silica		72.90
Alumina		14.70
Oxide of iron		4.50
Lime		0.60
Magnesia	<i>.</i>	0.30
Soda		0.70
Potash		1.50
Titanic acid		1.00
Water		4.20
		99.50
Total fluxes		7.60

This clay burned steel hard at a temperature of 2,174 degrees F. The fire clay is represented by an analysis of a sample from near Milano Junction, as follows:

	Per	cent.
Silica		57.40
Alumina		28.84
Oxide of iron		0.72
Lime		0.10
Magnesia		0.10
Soda		0.47
Potash		Trace
Titanic acid		1.48
Water		10.44
	_	
FD - 4 T - 41		99.55
Total fluxes		1.39

This clay became steel hard at a temperature of 2,102 degrees F. It is one of the best fire clays in the State, but is not used. Milam county has long been a heavy producer of lignite. The industry centers around Rockdale. The average composition of the lignites from this county is as follows:

	Pe	r cent.
Moisture	 	31.22
Volatile combustible matter	 	33.99
Fixed carbon	 	25.83
Ash	 	8.96
	-	
Sulphur	 	1.18
B. t. u. per pound	 	7,268

MILLS COUNTY.

Location—Near center.

County seat—Goldthwaite; population, 1,129; elev. 1,518; lat. 31° 27′; long. 98° 34′; mag. dec. 9° 3′.

Area, square miles, 700.

Population, 9,694.

Railroads, 1.

Miles of railroad, 34.87.

Assessed valuation of property of all kinds, \$6,205,140.

Mineral resources—Clays; limestone; sandstone; gravel.

The mineral resources of Mills county have not been investigated.

MITCHELL COUNTY.

Location—West Texas.

County seat—Colorado; population, 1,840; elev. 2,067.

Area, square miles, 807.

Population, 8,956.

Railroads, 2.

Miles of railroad, 30.86.

Assessed valuation of property of all kinds, \$6,366,848.

Mineral resources—Salt; gravel, limestone.

Mitchell county has been a steady producer of salt, obtained by evaporating the deep-seated brines at Colorado City.

MONTAGUE COUNTY.

Location—North Texas; borders on the Red river. County seat—Montague; population, 284; elev. 1,075.

Area, square miles, 976.

Population, 25,123.

Railroads, 3.

Miles of railroad, 85.17.

Assessed valuation of property of all kinds, \$12,806,465.

Mineral resources—Asphalt rock; coal; sandstone.

The asphalt rocks are bituminous sandstones. They are best developed around St. Jo, on Sampson Ridge, Devil's Backbone, etc. Their average composition is as follows:

	Per	cent.
Silica		88.00
Asphaltene		1.84
Petrolene		
Sulphur		0.22

These deposits seldom exceed 3 feet in thickness. The overburden may be as much as 27 feet and consists of thinly-bedded sandstones, clays, sand and Cretaceous limestones. Interbedded with the bituminous sandstone and forming a "horse" in it, there is often a hard bluish limestone carrying a little bitumen. This limestone has the following composition:

	Per	cent.
Silica		63.18
Alumina		2.04
Oxide of iron		Trace
Lime		20.52
Carbonic acid		11.50
Organic matter		3.08
organic matter	٠-	100 32

Bituminous coal is found at and near Bowie, but no coal has been produced in this county for some years. The composition of this coal was stated to be as follows:

	\mathbf{Per}	cent.
Moisture		2.30
Volatile combustible matter		
Fixed carbon		61.28
Ash		0.60
	1	00.00
Sulphur		1.14

In spite of the fact that this sample carried less than 1 per cent of ash, it is not at all probable that coal of this composition can be obtained in commercial quantities.

MONTGOMERY COUNTY.

Location—Southeast Texas.

County seat — Conroe; population, 1,374; elev. 213; lat. 30° 19'; long. 95° 26'; 7° 56'.

Area, square miles, 1,066.

Population, 15,679.

Railroads, 5.

Miles of railroad, 100.72.

Assessed valuation of property of all kinds, \$10,889,510.

Mineral resources—Clays; petroleum (?); gravel; natural gas.

The clays have not been investigated. Inasmuch as this county lies immediately north of and adjacent to the Humble oil field in Harris County, it is likely to become an oil producing county.

At Renn natural gas carrying 822 B. t. u. per cubic foot was struck in February, 1915.

MOORE COUNTY.

Location—Near center of the Panhandle.

County seat — Dumas; population, 200; elev. 3,638; lat. 35° 52′; long. 101° 59′; mag. dec. 11° 54′.

Area, square miles, 885.

Population, 561.

Railroads, none.

Assessed valuation of property of all kinds, \$2,204,116.

Mineral resources-Unknown.

MORRIS COUNTY.

Location—Northeast Texas.

County seat—Daingerfield; population, 1,100; elev. 397; lat. 33° 1'; long. 94° 43'; mag. dec. 7° 53' (1910).

Area, square miles, 278.

Population, 10,439.

Railroads, 2.

Miles of railroad, 35.52.

Assessed valuation of property of all kinds, \$2,558,149.

Mineral resources—Clays; iron ore; lignite; gravel.

The clays have not been investigated.

The iron ores (limonites) are found in the southeastern part of the county and are probably an extension of the ore fields of Marion and Cass counties. The quality of the ore is excellent, if one may judge from such analyses as have been published, the average metallic iron running to 54 per cent. The iron ore area may be taken at 15 square miles.

The average of two analyses of the lignite found in Morris

county (Pruitt place), with a thickness of less than 2 feet, is as follows:

	Per	cent.
Moisture		6.50
Volatile combustible matter		46.64
Fixed carbon		28.02
Ash		18.84
	· -	
	.]	100.00
Sulphur		2.22

MOTLEY COUNTY.

Location-Northwest Texas; south of the Panhandle.

County seat — Matador; population, 600; elev. ——; lat. 34° 0'; long. 100° 42'; mag. dec. 10° 13'.

Area, square miles, 984.

Population, 2,396.

Railroads, 1.

Miles of railroad, 20.

Assessed valuation of property of all kinds, \$3,934,941.

Mineral resources-Unknown.

NACOGDOCHES COUNTY.

Location—East Texas; between the Angelina and the Attoyac rivers.

County seat—Nacogdoches; population, 3,369; elev. 283; lat. 31° 37′; long. 94° 38′; mag. dec. 8° 0′ (1911).

Area, square miles, 962.

Population, 27,406.

Railroads, 6.

Miles of railroad, 106.18.

Assessed valuation of property of all kinds, \$9,528,490.

Mineral resources—Asphalt rock; clays; iron ore; natural gas; petroleum; mineral waters; gravel.

The asphalt rock resembles that found in Jasper county.

The pottery clays of this county are represented by an analysis of a sample from Nacogdoches, as follows:

		cent.
Silica		75.33
Alumina		14.73
Oxide of iron	•	1.10
Lime		0.05
Magnesia		

	Per	cent.
Soda		0.10
Potash		
Titanic acid		
Water	• • •	4.50
	_	
		99.33
Total fluxes		3.50

This clay became steel hard at a temperature of 2,390 deg. F. The iron ores have not been fully investigated, but such analyses as are available show that they do not carry above 46 per cent in iron, with about 20 per cent in silica.

The first oil wells in Texas to assume even a moderate commercial importance and the first oil pipe line were in Nacogdoches county. The oil was first noticed in 1867, but little or nothing was done until about 1887. Between this year and 1890 one company alone drilled forty wells, all of them shallow. In 1890 thirty oil wells were in operation. The center of the industry was near Oil Spring and Chireno and a 3-inch pipe line was built to Aaron's Hill, near Nacogdoches, a distance of 14½ miles.

Four miles northeast of Oil Spring a well drilled to a depth of 70 feet flowed from 250 to 300 barrels a day, but soon afterwards became a "pumper."

No oil has been produced in Nacogdoches county for many years, but it would appear that systematic drilling could be undertaken with strong probability of success.

The oil found in 1887-1890 was excellent for lubricating purposes. It had an asphalt base, did not lose its mobility at a temperature below zero F., and did not gum on exposure to the air.

NAVARRO COUNTY.

Location—Northeast of center.

County seat—Corsicana; population, 9,749; elev. 418; lat. 32° 5′; long. 96° 29′; mag. dec. 8° 26′ (1910).

Area, square miles, 1,136.

Population, 47,070.

Railroads, 4.

Miles of railroad, 132.57.

Assessed valuation of property of all kinds, \$26,818,845.

Mineral resources—Clays; natural gas; petroleum; limestone; gravel.

The red and brown-burning clays are represented by an analysis of a sample from near Corsicana, as follows:

Silica	Per	cent.
Silica		55.28
Alumina		21.27
Oxide of iron		8.37
Lime		3.90
Magnesia		0.28
Soda		Trace
Potash		None
Titanic acid		1.05
Water		4.26
Carbonic acid		3.30
Organic matter		1.43
	_	99.14
Total fluxes		12.55

This clay became steel hard at a temperature of 1,922 deg. F. The quality of the brick made is shown by tests on a sample from the Corsicana Brick Co., as follows:

	Light red.
Weight per cu. ft., pounds	117.10
Per cent. of cells by volume	26.01
Volume of cells in 100 parts, by weight	sht 13.87
Pounds of water absorbed per cu. ft	16.24
Crushed at, pounds per square inch.	4,400

The Corsicana oil field came into production in 1896, and to the close of 1913 had yielded 6,151,034 barrels of oil, valued at \$4,734,762.

The Powell oil field came into production in 1900, and to the close of 1913 yielded 3,884,623 barrels of oil, valued at \$2,-287,825.

The total oil production of Navarro county, to the close of 1913, was 10,035,657 barrels, valued at \$7,022,587.

The natural gas is used locally.

The limestones have not been fully investigated. About 10 miles southeast of Corsicana, near Richland, there is a bluish limestone of the following composition and qualities:

	\mathbf{Per}	cent.
Silica		2.90
Alumina		1.41
Oxide of iron		0.31
Lime		51.36

Carbonic acid	
Weight per cu. ft., pounds	
Pounds of water absorbed per cu. ft Crushed at, pounds per square inch	. 0.95

NEWTON COUNTY.

Location-East Texas; borders on Louisiana.

County seat—Newton; population, 575; elev. 172; lat 30' 51° ; long. 93° 44'; mag. dec. 7° 33' (1912).

Area, square miles, 903.

Population, 10,850.

Railroads, 3.

Miles of railroad, 92.97.

Assessed valuation of property of all kinds, \$6,068,308.

Mineral resources—Clays; lignite; gravel.

The mineral resources of Newton county have not been investigated.

NOLAN COUNTY.

Location—Northwest of center.

County seat—Sweetwater; population, 4,176; elev. 2,164; lat. 32° 28'; long. 100° 24'; mag. dec. 10° 25' (1910).

Area, square miles, 828.

Population, 11,999.

Railroads, 4.

Miles of railroad, 91.29.

Assessed valuation of property of all kinds, \$8,267,676.

Mineral resources—Clays; gypsum; gravel.

The mineral resources of Nolan county have not been investigated.

NUECES COUNTY.

Location-South Texas; borders on the Gulf of Mexico.

County seat—Corpus Christi; population, 8,222; elev. 35; lat. 27° 47′; long. 97° 24′; mag. dec. 8° 21′.

Area, square miles, 1,108.

Population, 21,955 (includes Jim Wells and Kleberg counties).

Railroads, 5.

Miles of railroad, 74.21.

Assessed valuation of property of all kinds, \$17,886,190.

Mineral resources—Clays; natural gas; petroleum; gravel.

The mineral resources of Nueces county have not been fully investitgated, but it is probable that both oil and gas exist there. The bringing in of the great gas well at White Point, in San Patricio County, 7 miles across the bay from Corpus Christi, has aroused additional interest in the possibilities of this county.

OCHILTREE COUNTY.

Location-North line of the Panhandle.

County seat — Ochiltree; population, 450; elev. 2,700; lat. 36° 17'; long. 100° 48'; mag. dec. 11° 10'.

Area, square miles, 864.

Population, 1,602.

Railroads, none.

Assessed valuation of property of all kinds, \$1,515,291.

Mineral resources—Unknown.

OLDHAM COUNTY.

Location—West line of the Panhandle; borders on New Mexico.

County seat — Tascosa; population, 192; elev. 3,176; lat. 35° 33'; long. 102° 14'; mag. dec. 11° 53'.

Area, square miles, 1,470.

Population, 812.

Railroads, 2.

Miles of railroad, 66.61 (1913).

Assessed valuation of property of all kinds, \$3,616,758.

Mineral resources—Unknown.

ORANGE COUNTY.

Location—Extreme southeast Texas; borders on Louisiana. County seat—Orange; population, 5,527; elev. 10; lat. 30° 3'; long. 101° 13'; mag. dec. 9° 46'.

Population, 9,528.

Railroads, 4.

Miles of railroad, 67.29.

Assessed valuation of property of all kinds, \$8,283,548.

Mineral resources—Natural gas; petroleum; clays; gravel.

The clays have not been investigated.

This county entered the list of oil producing counties in 1913, and produced during that year 17,706 barrels of oil, valued at \$19,123.

PALO PINTO COUNTY.

Location—North of center.

County seat—Palo Pinto; population, 482; elev. 1,000; lat. 32° 46′; long. 98° 17′; mag. dec. 9° 9′.

Area, square miles, 971.

Population, 19,506.

Railroads, 2.

Miles of railroad, 58.59.

Assessed valuation of property of all kinds, \$10,865,370.

Mineral resources—Clays; coal; limestone; sandstone; natural gas; mineral waters; gravel; petroleum.

The clays have not been investigated.

The average composition of the coal mined at Strawn by the Strawn Coal Mining Company is as follows:

Moisture	Per cent.
Moisture	$\dots 2.51$
Volatile combustible matter	35.68
Fixed carbon	46.34
Ash	15.47
	100.00
Sulphur	
D. c. a. ber boana	

This is also about the composition of the coal mined at Mt. Marion by the Mt. Marion Coal Mining Co.

The Mineral Wells Crushed Stone Company operates a limestone quarry at Mineral Wells, furnishing stone for ballast, road making, bitulithic paving, etc. Several analyses and tests have been made, as follows:

Silica	0.60	0.80	3.14	5.18
Alumina		none	none	0.50
Oxide of iron		1.05	1.95	1.80
Lime	51.25	52.50	48.93	48.25
Magnesia		0.59	0.33	1.38
Carbonic acid	40.25	40.10	38.96	37.90
Sulphuric acid		0.88	0.35	1.72
Loss on ignition	4.45	4.00	4.04	3.52
	97.75	99.92	97.70	$\frac{100.25}{}$

The weight per cu. ft. varied from 165.1 to 169 pounds. The amount of water absorbed per cu. ft. varied from 0.06 to 0.15 lb. The crushing strain, in pounds per square inch, varied from 14,000 to 16,000.

The composition of the water from the Indian Wells Water Company, Mineral Wells, is as follows:

	Grains per U. S. Gal.	
	Fresh from the	Condensed
	well.	(52-1)
Potassium chloride	5.50	378.28
Sodium nitrate	0.88	15.19
Sodium carbonate	1.85	138.24
Sodium sulphate		11,442.88
Magnesium sulphate		310.53
Calcium sulphate		17.82
Magnesium bicarbonate		
Calcium bicarbonate		
Silica	0.99	9.91
Alumina	5.65	18.07
Iron oxide		Trace
	342.04	14,072.27
Analysis by W. T. Road	University of Toy	0.0

Analysis by W. T. Read, University of Texas.

Analyses of the Lamar Well waters, from Mineral Wells, as furnished by the company, are as follows:

	Grains per U. S. Gal.
Bicarbonate of iron	0.50
Bicarbonate of lime	25.90
Chloride of potassium	2.50
Chloride of sodium	33.90
Carbonate of sodium	None
Sulphate of magnesia	155.00
Sulphate of soda	
Bicarbonate of soda	
	473.00
Analysis by F. B. Porter.	
O. K., or Sleepy Wat	ær.
Carbonate of lime	8.96
Chloride of magnesia	Trace
Sulphate of magnesia	16.21
Carbonate of magnesia	
Chloride of potassium	
Sulphate of soda	
Chloride of sodium	
Carbonate of soda	
Silica	
Alumina and iron	
Volatile matter	
voiadire inacter	
	59.47
Analysis by P. S. Tilson.	

Mineral Wells Splits. (Concentrate	d Water).
Bicarbonate of iron	11.60
Bicarbonate of lime	1.40
Potassium chloride	11.40
Sodium chloride	137.60
Sodium carbonate	2.70
Magnesium sulphate	1004.40
Sodium sulphate	2919.10
Calcium chloride	82.50
	4 070 70

The composition of Sangeura water, the Gibson Well Water Co., Mineral Wells:

	Grains per U. S. Ga
Potassium chloride	0.43
Sodium chloride	22.96
Sodium sulphate	215.30
Sodium bicarbonate	9.57
Magnesium bicarbonate	21.19
Calcium bicarbonate	20.88
Alumina	0.50
Oxide of iron	0.02
Silica	1.63
· &	292 46

Analysis by J. R. Bailey, University of Texas.

The composition of Sangeura Water No. 3, or BB water:

•	Grains per U. S. Gal.
Potassium chloride	4.26
Sodium chloride	83.67
Sodium nitrate	0.02
Sodium carbonate	1.02
Sodium sulphate	202.95
Magnesium sulphate	107.55
Calcium sulphate	28.17
Calcium bicarbonate	
Oxide of iron	0.03
Alumina	0.54
Silica	0.46
	474.39

Analysis by W. T. Read, University of Texas.

The composition of Gibson water:

	Grains per U. S. Gal.
Sodium chloride	
Sodium sulphate	256.59
Sodium carbonate	
Calcium carbonate.	
Magnesium carbonat	

13-Min.

Gra	ins per U.S.G	al.
Oxide of iron and alumina	0.87	
Silica	1.19	
	329.62	
Carbonic acid gas, cu. in. per U. S. gal.	4.26	
Analysis by E. T. Dumble.		

The composition of what is known as Lamar White Sulphur Water is as follows, according to P. S. Tilson:

	Grains per U. S. Gal.
Calcium sulphate	12.14
Calcium carbonate	21.43
Magnesium chloride	Trace
Magnesium sulphate	64.50
Magnesium carbonate	Trace
Potassium chloride	Trace
Sodium sulphate	
Sodium chloride	
Sodium carbonate	9.10
Alumina and iron	Trace
Silica	1.66
Volatile matter	15.30
	313 28

The composition of American Vichy Water, from Mineral Wells, is as follows:

1	2
Sodium sulphate195.791	226.976
Sodium chloride 18.425	24.308
Potassium sulphate 3.170	17.310
Calcium	6.350
Calcium bicarbonate 13.261	
Magnesium	4.648
Magnesium carbonate 5.338	
Silica 10.221	1.500
Magnesium sulphate 11.523	
Carbonic acid 13.998	36.960
Alumina	8.500
271.727	326.552

Analysis furnished by the company.

Composition of Crazy Well Water, Mineral Wells:

	Grains per U. S. Gallon.			
•	1	2	3	. 4
Potassium chloride	4.65	15.32	3.90	5.19
Sodium chloride	43.43	49.50	11.12	24.21
Sodium nitrate	3.35	20.43	0.32	0.35
Sodium carbonate	0.74	1.23	3.21	2.39
Sodium sulphate	59.36	110.35	194.48	267.44

the second secon	Gr	rains per	U.S. Gall	on.
Magnesium sulphate	39.94	38.89	43.98	7.73
Magnesium bicarbonate.	9.63	12.20	0.63	13.04
Calcium bicarbonate	36.30	30.62	35.08	19.24
Oxide of iron	Trace	Trace	Trace	Trace
Alumina	5.41	5.35	3.43	$\boldsymbol{0.22}$
Silica	1.40	1.34	1.34	1.16
	204.21	285.23	297.49	341.27

Analysis by W. T. Read, University of Texas.

The composition of Min-Ala Water, from Mineral Wells, is as follows:

	Grains per U.	S. Gallon.
Sodium sulphate	. 196.640	273.202
Sodium chloride	19.360	23.070
Calcium sulphate		16.832
Potassium sulphate		1.108
Magnesium sulphate		8.648
Silica	. 11.500	11.500
Carbonic acid	. 30.005	30.080
	319.915	364.440

Analysis furnished by the company.

The composition of Star Well Water, Mineral Wells, is as follows:

Grain	s per U. S. Gal.
Hydrous magnesium sulphate	18.833
Hydrous sodium sulphate	150.053
Hydrous calcium sulphate	6.547
Calcium carbonate	2.084
Magnesium carbonate	4.663
Sodium chloride	23.982
Calcium chloride	5.574
Potassium chloride	1.281
Alumina and iron	1.644
Silica	1.853
Organic matter, volatile matter and	
loss	9.805
	226.319

Traces of iodine and ammonia. Analysis by A. Merrill, St. Louis.

The opening of a promising oil field a few miles west of Strawn, announced in January, 1915, has aroused considerable interest. The oil is of high grade.

PANOLA COUNTY.

Location—East Texas; borders on Louisiana.

County seat — Carthage; population, 1,350; elev. 292; lat. 32° 10'; long. 94° 20'; mag. dec. 7° 40' (1911).

Area, square miles, 814.

Population, 20,424.

Railroads, 3.

Miles of railroad, 49.

Assessed valuation of property of all kinds, \$4,701,200.

Mineral resources—Asphalt rock; iron ore; lignite; limestone; sandstone.

The asphalt rocks are similar to those found in Jasper county (q. v.)

While the iron ores of the county have not been fully investigated, yet the analyses to hand show that their content in metallic iron is comparatively low. Out of six analyses of samples from different localities, two gave 50 and over in iron, and four ranged from 42 to 48 per cent.

Near Beckville there is a 4½ foot seam of lignite of the following composition:

						P	er	cent.
Moisture								20.80
Volatile combustible	matter	٠						52.08
Fixed carbon								
Ash			٠.		 			4.45
							1	00.00
Sulphur	. 							0.48

The clays have not been fully investigated. The average composition of clays found near Carthage is as follows:

	`			Per cent.
				75.40
Alumi	na		 	9.78
Oxide	of iro	n	 	4.38
Soda			 	5.01
Potasi	h		 	1.56
Water	•		 	4.00
				100.13
Total	fluxes	·	 	10.95

PARKER COUNTY.

Location—North of center.

County seat — Weatherford; population, 5,074; elev. 1,000; lat. 32° 45′; long. 97° 49′; mag. dec. 9° 4′.

Area, square miles, 888.

Population, 26,331.

Railroads, 4.

Miles of railroad, 71.95.

Assessed valuation of property of all kinds,\$13,486,760.

Mineral Resources—Clays; coal; limestone; gravel.

The pottery clays are represented by average analyses of samples from Rock Creek, about 15 miles west of Weatherford, as follows:

	Pe	r cent.
Silica	٠	55.25
Alumina		19.80
Oxide of iron		4.60
Lime		0.73
Magnesia	٠	4.51
Soda		1.73
Potash		2.21
Titanic acid		1.31
Water		4.78
Carbonic acid		4.17
Organic matter		0.91
	-	100.00
m + 1 61		
Total fluxes	٠.	.13.80

There is a considerable variation in the content of carbonic acid, viz.: from 0.30 to 8.04 per cent. These clays have a low fusing point, but become steel hard at a temperature of 1,994 deg. F.

The quality of the brick is shown by the following tests on samples received from the Acme Pressed Brick Co., Fort Worth, works at Millsap:

			Volume of	Pounds of	
	Weight	Percent of	cells in	water ab-	Crushed
	per cu. ft.	cells by	100 parts	sorbed per	at lbs. per
	lbs.	Vol.	by weight.	cu. ft.	sq. inch.
1	 149.50	5.39	2.25	3.36	7.517
2	 134.50	23.90	11.88	15.97	6,717
3	 137.70	9.92	4.50	6.20	4,204
4.	 135.10	17.49	8.08	10.91	5.997
5	 152.00	3.89	1.60	2.43	3.161
6	 146.30	3.85	1.64	2.39	4.661
7	 151.40	2.43	1.00	1.51	5.135
8	 147.40	7.55	2.99	4.42	5,056

		Explanation.	
 Millsap	red.	5.	Acme

^{2.} Acme No. 1. 6. Acme No. 104. 3. Acme No. 100. 7. Acme No. 106.

The composition of the coal that has been mined in Parker county is given by the following average of four analyses:

^{4.} Acme No. 27. 8. Acme No. 113

	\mathbf{Per}	cent.
Moisture		6.10
Volatile combustible matter		32.49
Fixed carbon		45.83
Ash		15.58
Sulphur		2.10
B. t. u. per, pound	1	1,358

No coal is now mined in this county.

PARMER COUNTY.

Location—Northwest Texas, on west line of State. County seat—Farwell; population, 200; elev. 4,095.

Area, square miles, 873.

Population, 1,555.

Railroads, 1.

Miles of railroad, 50.74.

Assessed valuation of property of all kinds, \$.....

Mineral resources—Unknown.

PECOS COUNTY.

Location—Trans-Pecos Texas; west of the Pecos river. County seat—Fort Stockton; population, 439; elev. 2,948; lat. 30° 54′; long. 102° 50′; mag. dec. 10° 54′.

Area, square miles, 5,536.

Population, 2,071.

Railroads, 2.

Miles of railroad, 78.41.

Assessed valuation of property of all kinds, \$8,072,010.

Mineral resources—Asphalt rock; limestone; natural gas; petroleum; sulphur; gravel.

The mineral resources of Pecos County have not been fully investigated. A bituminous limestone occurs at what is known as the "Oil Seep," 15 miles northeast of Fort Stockton. It had the following composition:

Per	
Silica 1	12.68
Alumina	
Oxide of iron	0.76
Lime	44.74
Carbonic acid	35.39
Bitumen	3.20

The oil that exuded at this locality was of a very dark brown color. It was viscous and had a specific gravity of 0.920 (22.2 B.) at 60 deg. F. On distillation it yielded 11.77 per cent of pale amber oil up to 496 deg. F. It gave 45.54 per cent of an asphaltic mass. A well drilled at this locality to a depth of 1,200 feet reported "almost pure sulphur" as follows:

Depth, feet. 200-250 400-525 Thickness, feet.
50
125

The log of this well mentions "quartz rock with oil" from a depth of 40 ft. to 200 ft.; "quartz rock with oil and sulphur" from 250 ft. to 400 ft.; "quartz rock with crystallized sulphur" from 540 ft. to 600 ft. As no examination of the drillings was made it is impossible to say what was meant by these various terms, but it is probable that the so-called "sulphur" was in the form of pyrite.

Another well, close by, did not confirm the sulphur record of this well, although it was drilled to a depth of 423 feet. A little gas was found in these wells, but no oil in commercial amounts.

This locality is in Section 19, Block 140. In Section 114, Block 8, 5 miles south of the place once known as Santa Lucia, and on the I N K Ranch, a heavy black oil was found at a depth of 62 feet. This place is about 10 miles northwest of the "Oil Seep."

Two or three comparatively deep wells have been drilled in this part of Pecos county, but no oil or gas in commercial amounts was found. It is likely that if any commercial oil or gas is found it will be at depths not yet reached by any drilling operations in the county, possibly not above the 2,500 to 3,000-foot level.

POLK COUNTY.

Location—Southeast Texas; west of the Trinity River.

County seat—Livingston; population, 1,024; elev. 236; lat. 30° 43'; long. 94° 56'; mag. dec. 7° 40'.

Area, square miles, 1,100.

Population, 17,459.

Railroads, 6.

Miles of railroad, 90.66.

Assessed valuation of property of all kinds, \$8,436,144. Mineral resources—Clays; gravel.

The sandy brick clays are represented by an analysis of a sample from near Hortense, as follows:

	Per cent.
Silica	70.00
Alumina	
Oxide of iron	4.50
Lime	Trace
Magnesia	Trace
Soda	0.90
Potash	Trace
Titanic acid	0.60
Water	6.10
	100.70
Total fluxon	5.40

This clay became steel hard at a temperature of 2,102 degrees F. The clays of easy fusibility are represented by an analysis of a sample from near Carmona, as follows:

			Ĺ								Ι	ei	r cent.
Silica .		 					. ,						68.34
Alumina	a	 				٠,			, .				15.28
Oxide o	f iron.	 											3.44
Lime .		 			٠.				٠.				1.20
Magnesi	ia '	 											0.88
Soda .		 							٠.				3.55
Potash		 			٠.		. ,	•					2.47
Titanic	acid	 											0.52
Water		 		٠٠.									4.70
												-	100.38
Total f	luxes	 					_						11 54

This clay became viscous at a temperature of 2,174 degrees F.

POTTER COUNTY.

Location—Near center of the Panhandle.

County seat—Amarillo; population, 9,957; elev. 3,676; lat. 35° 13′; long. 101° 51′; mag. dec. 11° 47′.

Area, square miles, 874.

Population, 12,424.

Railroads, 4.

Miles of railroad, 88.63.

Assessed valuation of property of all kinds, \$12,577,135.

Mineral resources—Unknown, except salt and possibly potash salts.

The mineral resources of Potter county have not been investigated. Drilling for oil and gas was carried on during the year 1914 under conditions that appeared to be encouraging. Heavy beds of rock salt have been found in a deep well 23 miles northwest of Amarillo, with decided indications of beds of potash salts.

A Bulletin on this subject entitled "Potash in the Texas Permian" has been prepared by Dr. Udden, of this Bureau.

PRESIDIO COUNTY.

Location—Trans-Pecos Texas; west of the Pecos river; borders on the Rio Grande.

County seat—Marfa; population, 494; elev. 4,688; lat. 30° 19'; long. 104° 1'; mag, dec. 10° 53'.

Area, square miles, 2,652.

Population, 5,218.

Railroads, 1.

Miles of railroad, 44.35.

Assessed valuation of property of all kinds, \$5,762,793.

Mineral resources—Agate; coal; granite; lead ores; limestone; natural gas; onyx; silver ores; zinc ores; mineral waters; gravel.

The coal in Presidio county is in the southwestern part, adjoining the Rio Grande. The district is known as the San Carlos, and it is about 25 miles south of the Southern Pacific Railway at Chispa. In 1893-95 some hopes were entertained that this district could be developed, and a railroad was built from Chispa.

It was stated that there were two benches of coal, separated by 6 to 18 inches of slate. The lower bench was said to be 30 to 40 inches in thickness, the upper bench 32 inches. The following analyses were given:

•	Vol. combust	t .		
Moisture.	matter.	Fixed carbon.	Ash.	Sulphur.
1.00	39.05	49.05	10.00	Trace
0.94	34.48	58.96	5.62	0.64

It was stated that coking tests made on this coal at Connells-ville, Pennsylvania, showed that 48-hour beehive coke gave 93.7 per cent fixed carbon and 6.3 per cent of ash.

Later investigations and analyses have not confirmed the earlier reports. No work has been done in this district for some years.

It is possible that better and thicker coal is to be found nearer the Rio Grande than at the former localities, but faults and other disturbances of a more or less local character will have to be considered. A 600-foot well drilled north of this coal field gave a good pressure of natural gas, but the matter has not been followed up.

Below Alamito, on Alamito Creek and close to the projected line of the Kansas City, Mexico & Orient Railway, from Alpine to Presidio del Norte, there is a large deposit of a granitic flagstone. It occurs in slabs of varying thickness, ½-inch to 3 inches, is of a beautiful grayish black color, and takes a fine polish. The quality of this stone is shown by the following analyses and tests:

	Per	Cent.
Silica		74.00
Alumina		14.00
Oxide of iron		1.00
Soda		6.20
Potash		3.90
	٠	
		99.10
Weight per cubic foot, pounds	1	63.49
Pounds of water absorbed per cu. ft		1.22
Crushed at, pounds per square inch		

South of Marfa, from 12 to 15 miles, there is a deposit of a black onyx (carbonate of lime), which takes a fine polish and makes a beautiful stone for interior ornamental purposes.

The lead ores of Presidio county are worked at Shafter in connection with the silver mining operations there, but the output is not large. An excellent lead ore (galena) occurs on the west slope of the Chinati Mountains, and has been developed to some extent, shipments having been made to the sme¹ at El Paso. A fine galena also occurs in the Solitario, a wild and extremely rugged part of the county east of Fresno Canyon, and some miles north of Lajitas, a small settlement on the Rio Grande.

Zinc ores (chiefly carbonate) are found near Shafter, but have not been developed.

Silver mining has been carried on at Shafter for nearly 30 years, and practically all of the silver credited to the state since 1882, more than \$7,000,000, was from this place. The ore is silver chloride for the most part, although some galena rich in silver also occurs. The average silver content of the Shafter ore is

from \$15.00 to \$20.00 a ton, but "pockets" of much higher value are found. The underground workings now comprise more than 40 miles of shafts, drifts, levels, upraises, winzes, etc. The country rock is carboniferous limestone, and the silver (and lead) ore occurrs in more or less isolated "chambers" of varying dimensions, some of them very large.

RAINS COUNTY.

Location-Northeast Texas; north of the Sabine river.

County seat—Emory; population, 426; elev. 564; lat. 32° 51′; long. 95° 44′; mag. dec. 8° 16′ (1912).

Area, square miles, 252.

Population, 6,787.

Railroads, 2.

Miles of railroad, 25.51.

Assessed valuation of property of all kinds, \$2,807,490.

Mineral resources—Clays; lignite.

Excellent brick and hollow building tile are made at Ginger by the Fraser Brick Company, but no analyses or tests can be given.

At Emory and seven miles east there is lignite, but it is not now worked. The composition is given by the following average of two analyses:

	\mathbf{Per}	cent.
Moisture		10.17
Volatile combustible matter		39.52
Fixed carbon		36.60
Ash		13.71
	1	00.00
Sulphur		0.95

RANDALL COUNTY.

Location—South line of the Panhandle.

County seat — Canyon; population, 1,400; elev. 3,566; lat. 35° 0'; long. 102° 0'; mag. dec. 11° 35'.

Area, square miles, 872.

Population, 3,312.

Railroads, 2.

Miles of railroad, 46.78.

Assessed valuation of property of all kinds, \$4,617,764.

Mineral resources—Unknown, with the possible exception of potash salts. See under Potter county for Bulletin on this subject.

REAGAN COUNTY.

Location—West Texas.

County seat—Stiles; population, 150.

Area, square miles, 1,190.

Population, 392.

Railroads, 1.

Miles of railroad, 31.92.

Assessed valuation of property of all kinds, \$1,279,430.

Mineral resources—Unknown.

REAL COUNTY.

Location—Southwest Texas.

County seat—Leakey; population, 318; elev. 1,600.

Area, square miles, 700.8.

Population—(No official statistics. Created in 1913).

Railroads, none.

Assessed valuation of property of all kinds, no official statistics. Mineral resources—Kaolin; limestone; gravel.

In Real county, about six miles west of Deakey, there is a large deposit of the only kaolin known to exist in the State. It has been mentioned under the name of the Edwards county kaolin, but the locality is now in Real, created from some adjoining counties in 1913.

While it is not probable that all of the deposit consists of high grade material, yet the quality of the better grades is so excellent that well known potters, after considerable experience with it, have said there was no better kaolin produced in the United States or imported from abroad.

The distance of the deposit from rail—45 miles—has been one of the reasons why there has been so little development of this material, but a railroad has been surveyed from Uvalde, a town on the Southern Pacific Railway, 90 miles west of San Antonio, and partly constructed.

The deposit occurs in Cretaceous limestone, and has been exploited, by auger-drilling, pitting, etc., to a depth of 80 feet in places. The composition of this kaolin is given by the following analysis:

\mathbf{p}	er cent.
Silica	. 45.50
Alumina	
Oxide of iron	. 0.61
Hygroscopic water	. 6.42
Combined water	12.50
	98.26

RED RIVER COUNTY.

Location-Northeast Texas; borders on the Red River.

County seat—Clarksville; population, 2,065; elev. 442; lat-33° 36'; long. 95° 3'; mag. dec. 7° 49' (1912).

Area, square miles, 1,061.

Population, 28,564.

Railroads, 2.

Miles of railroad, 41.06.

Assessed valuation of property of all kinds, \$12,408,328.

Mineral resources—Clays; gravel.

The sandy brick clays are represented by an analysis of a sample from Detroit, as follows:

	Per	cent.
Silica		
Alumina		10.50
Oxide of iron	.	3.60
Lime	.	0.45
Magnesia		0.23
Soda		0.40
Potash		0.90
Titanie acid		9.32
Water		4.22
Total fluxes		99.12
Total fluxes		5.58

This clay became steel hard at a temperature of 2,246 degrees F. A sample of natural gas bubbling up in Red River, near the month of Cash Creek, gave 463 B. t. u. per cubic foot.

REEVES COUNTY.

Location—Trans-Pecos Texas; west of the Pecos River; south of New Mexico.

County seat — Pecos; population, 1,856; elev. 2,580; lat. 31°-26'; long. 103° 33'; mag. dec. 10° 30'.

Area, square miles, 2,610.

Population, 4,392.

Railroads, 3.

Miles of railroad, 137.75.

Assessed valuation of property of all kinds, \$8,593,312.

Mineral resources—Natural gas; petroleum; sulphur.

Oil and natural gas occur in the Toyah field, and a considerable number of wells have been drilled. The locality is distinctly favorable, but no producing wells have been brought in. The same remark applies to the San Martine field, in the southwestern part of the county. The sulphur deposits, similar to those in Culberson county, have not been developed.

REFUGIO COUNTY.

Location—Southeast Texas; borders on San Antonio Bay and Copano Bay.

County seat—Refugio; population, 609; elev. 50; lat. 28° 18'; long. 97° 14'; mag. dec. 8° 58' (1912).

Area, square miles, 802.

Population, 2,814.

Railroads, 1.

Miles of railroad, 47.32.

Assessed valuation of property of all kinds, \$4,914.604.

Mineral resources—Clays.

The clays have not been investigated. This is one of the coastal counties and may yield both oil and gas.

ROBERTS COUNTY.

Location—Near center of the Panhandle; traversed by the Canadian River.

County seat — Miami; population, 400; elev. 2,802; lat. 35° 42′; long. 100° 38′; mag. dec. 10° 52′.

Area, square miles, 860.

Population, 950.

Railroads, 1.

Miles of railroad, 17.75.

Assessed valuation of property of all kinds, \$2,671,554.

Mineral resources—Unknown.

ROBERTSON COUNTY.

Location—East of the center.

County seat—Franklin; population, 869; elev. 443; lat. 31° 1′; long. 96° 30′; mag. dec. 8° 26′.

Area, square miles, 913.

Population, 27,454.

Railroads, 3.

Miles of railroad, 127.

Assessed valuation of property of all kinds, \$13,288,110.

Mineral resources—Clays; lignite; sandstone; gravel.

The clays of easy fusibility are represented by an analysis of a sample from near Calvert, as follows:

	Pe	r cent.
Silica		83.50
Alumina		8.51
Oxide of iron		1.40
Lime		1.00
Magnesia		1.08
Soda		1.50
Potash		0.50
Titanic acid		1.05
Water		2.40
	-	100.94
Total fluxes		5.48

This clay did not burn steel hard under a temperature of 2.390 degrees F.

A good fire clay is found near Bremond. It has the following composition:

	Per cent.
Silica	83.00
Alumina	7.42
Oxide of iron	0.36
Lime	Trace
Magnesia	3.01
Soda	
Potash	0.30
Titanic acid	
Water	3.70
•••••••	99.75
Total fluxes	4 0.9

This clay did not burn steel hard at a temperature of 2,570 degrees F.

Robertson county has long been an important producer of lignite. The average composition of the lignite from this county is given by the following average of nine analyses:

		Per cent.
Moisture		30.34
Volatile combustible	matter	32.48

Fixed	car	bon	 				٠.				P	er	cent. 27.87
													9.31
												1	00.00
Sulphi B. t. 1													$0.86 \\ 8,122$

ROCKWALL COUNTY.

Location-North Texas.

County seat — Rockwall; population, 1,136; elev. 552; lat. 32° 45′; long. 96° 27′; mag. dec. 8° 44′ (1912).

Area, square miles, 171.

Population, 8,072,

Railroads, 1.

Miles of railroad, 13.58.

Assessed valuation of property of all kinds, \$5,185,248,

Mineral resources—Clays; gravel.

The clays have not been investigated.

RUNNELS COUNTY.

Location-Northwest of the center.

County seat—Ballinger; population, 3,536; elev. 1,630; lat. 31° 45′; long. 99° 58′; mag, dec. 9° 2′.

Area, square miles, 1,073.

Population, 20,853.

Railroads, 3.

Miles of railroad, 62.37.

Assessed valuation of property of all kinds, \$10,167,342.

Mineral resources—Clays; gypsum; limestone.

The mineral resources have not been investigated.

RUSK COUNTY.

Location—East Texas.

County seat—Henderson; population, 1,750; elev. 470; lat. 32° 11'; long. 94° 49'; mag, dec. 7° 58'.

Area, square miles, 915.

Population, 29,946.

Railroads, 5.

Miles of railroads, 53.47.

Assessed valuation of property of all kinds, \$5,977,880.

Mineral resources—Clays; iron ore; lignite; sandstone.

The pottery clays are represented by an analysis of a sample from near Henderson, as follows:

	er cent.
Silica	69.80
Alumina	
Oxide of iron	
Lime	
Magnesia	0.53
Soda	1.05
Potash	. 0.50
Titanic acid	. 0.17
Water	6.72
	99.62
Motel fluxes	7.08

This clay burned steel hard at a temperature of 2,102 degrees F.

There is a bed of lignite at Graham's Lake, 12 miles west of Henderson, 3 to 6 feet thick, with the following composition:

Moisture	45.36 32.44 8.69
Sulphur	0.88

At Millville there is another outcrop of lignite.

The iron ores (limonites) have not been developed, although some of them are of good quality; as, for instance, two miles east of Henderson on the Pine Hill road; the Iron Mountain, at Gould; at Sulphur Spring; west side of Iron County, 2½ miles east of Glenfawn. Some of these ores carry as much as 54 per cent. of iron.

The quality of the brick made is shown by the following tests on a sample of furnace brick, several years old, made at Henderson:

Weight of a cubic foot, pounds	114.70
Per cent. of cells by volume	30.79
Volume of cells in 100 parts by weight	16.75
Pounds of water absorbed per cubic foot.	19.21
Crushed at, pounds per square inch	1,700

CHAPTER V.

DISCUSSION OF COUNTIES—Continued.

Sabine—Zavalla.

SABINE COUNTY.

Location—East Texas; borders on Louisiana.

County seat—Hemphill; population, 279; lat. 31° 21'; long. 93° 51'; mag. dec. 7° 27' (1912).

Area, square miles, 577.

Population, 8,582.

Railroads, 2.

Miles of railroad, 35.65.

Assessed valuation of property of all kinds, \$4,587,828.

Mineral resources—Clays; iron ore; lignite; sandstone.

The mineral resources have not been fully investigated. There are probably good clays, with some iron ore and lignite, but the deposits have not been examined.

SAN AUGUSTINE COUNTY.

Location—East Texas; east of the Attoyac and Angelina rivers.

County seat—San Augustine; population, 1,204; elev. 304; lat. 31° 31'; long. 94° 6'; mag. dec. 7° 30' (1912).

Area, square miles, 570.

Population, 11,264.

Railroads, 2.

Miles of railroad, 34.31.

Assessed valuation of property of all kinds, \$5,598,121.

Mineral resources—Asphalt rock; iron ore; lignite; sandstone. The asphalt rock is a bituminous sandstone closely resembling the rock in Jasper county. It has not been used commercially. The iron ores and lignite have not been investigated, although on the Sabine and Angelina rivers the seams of lignite vary in thickness from 6 to 15 feet. The average of two analyses of lignite from this county is as follows:

Moisture		13.10 37.24 41.22
	-	100.00
Sulphur		2.36

SAN JACINTO COUNTY.

Location—Southeast Texas; west of the Trinity river. County seat—Cold Spring; population, 439; lat. 30° 35′; long. 95° 6′; mag. dec. 8° 11′ (1912).

Area, square miles, 636.

Population, 9,542.

Railroads, 3.

Miles of railroad, 16.70.

Assessed valuation of property of all kinds, \$3,645,100.

Mineral resources—Agate; clays; gravel.

Moss agates of great beauty have been found in San Jacinto county. The clay deposits have not been investigated.

SAN PATRICIO COUNTY.

Location—Southeast Texas; borders on San Patricio Bay. County seat—Sinton; population, 975; elev. 49; lat. 28° 1'; long. 97° 28'; mag. dec. 9° 0' (1912).

Area, square miles, 685.

Population, 7,307.

Railroads, 3.

Miles of railroad, 76.

Assessed valuation of property of all kinds, \$7,348,534.

Mineral resources—Agate; clays.

Moss agates have been found. The clay deposits have not been investigated.

In November, 1914, a very large flow of natural gas under heavy pressure was found in a deep well bored at White Point, 7 miles across the Bay from Corpus Christi. The flow was struck at a depth of about 2,200 feet, and the yield of gas was variously estimated at from 30,000,000 to 50,000,000 cubic feet per day. It was found to be impossible to control the well, and it soon became entirely unmanageable, wrecking the derrick and form-

ing what in effect was a great mud volcano, comparable to the early experiences in the Caddo field, Louisiana.

Other wells are to be sunk in this field with every precaution to save the gas or oil, should they be found under like heavy pressure.

This is the first great gas well that has been found in the Gulf Coastal Plain.

SAN SABA COUNTY.

Location-Near center, west.

County seat—San Saba; population, 1,200; elev. 1,705; lat. 31° 11′; long. 98° 43′; mag, dec. 9° 7′.

Area, square miles, 1,150.

Population, 11,245.

Railroads, 1.

Miles of railroad, 34.97.

Assessed valuation of property of all kinds, \$9,111,349.

Mineral resources — Limestone; marble; onyx; sandstone; gravel; petroleum(?).

San Saba county is rich in many varieties of limestone suitable for building and road purposes, lime-making, etc. At Mrs. Houston's, on Cherokee Creek, there is a limestone which might be used for lithographic work. No tests of this stone for such purposes has been made, but it appears to warrant further attention. The chemical composition of this stone is as follows:

Silica	Per	cent.
Silica		4.50
Alumina		0.40
Oxide of iron		0.60
Lime		49.29
Magnesia		3.15
Carbonic acid		41.59
Loss on ignition		0.41
		 .
		99 94

On the ranch of B. R. Russell, near the town of San Saba, there is a similar stone of the following composition:

											cent.
Silica			٠.		•						1.84
Alumina											0.10
Oxide of iron											0.60
Lime											53.36
Carbonic acid .											41.93
Loss on ignitio	n.										1.27
										_	

99.10

On this same property there are deposits of reddish, dove-colored and whitish marble taking a fine polish, as also a beautiful silver-black and golden onyx. These latter stones are unequalled in attractiveness for interior ornamental purposes, but they have not been developed.

Two samples of pink marble from B. R. Russell's ranch, near San Saba, have been examined, as follows:

Silica 2.60	3.42
Alumina 0.30	2.42
Oxide of iron 0.15	0.78
Lime	39.79
Magnesia 15.00	9.41
Carbonic acid 43.24	41.64
Soda 1.40	
Potash 0.60	
Loss on ignition 0.22	2.10
Hoss on ignition 0.22	2.13
100.51	99.56
Weight of a cu. ft. lbs166.70	146.40
Pounds of water absorbed	
per cu. ft 1.50	22.85
Crushed at, pounds per sq.	
in10,330	5,730

A sample of white marble, with streaks of blackish gray, was examined as follows:

Per cent.
Silica 0.57
Alumina 0.21
Lime 55.50 Carbonic acid 43.30
99.58
Weight of a cu. ft., pounds

Two other samples of San Saba marble have been examined, as follows—No. 1 from two miles south of Richland Springs, and No. 2 from twelve miles south of San Saba:

	1	2
Silica	0.20	0.16
Alumina } Oxide of iron {	0.90	0.32
Lime	54.50	55.50
Carbonic acid 4	12.64	43.60
Loss on ignition	1.00	
	99.24	99.58

1	2
Weight of a cu. ft., pounds. 169.10	169.73
Pounds of water absorbed	
per cu. ft 0.06	0.08
Crushed at, pounds per sq.	
in	10,266

While some drilling and considerable development work has been conducted on the marble deposits of San Saba county, no commercial quarry has been opened. It would, however, appear that some of these beds are worthy of attention, especially the pink marble and the white.

SCHLEICHER COUNTY.

Location-West Texas; west of the center.

County seat—Eldorado; population, 300; lat. 30° 52′; long. 100° 39′; mag. dec. 9° 21′.

Area, square miles, 1,355.

Population, 1,893.

Railroads, none.

Assessed valuation of property of all kinds, \$3,189,380.

Mineral resources—Unknown.

SCURRY COUNTY.

Location—Northwest Texas; southeast of the Staked Plains. County seat — Snyder; population, 2,514; elev. 2,310; lat. 32° 43′; long. 100° 56′; mag, dec. 10° 36′.

Area, square miles, 821.

Population, 10,924.

Railroads, 2.

Miles of railroad, 78.03.

Assessed valuation of property of all kinds, \$6,440,482.

Mineral resources—Unknown.

SHACKELFORD COUNTY.

Location—Northwest of the center.

County seat — Albany; population, 999; elev. 1,410; lat. 32° 43′; long. 99° 18′; mag, dec. 9° 36′.

Area, square miles, 926.

Population, 4,201.

Railroads, 1.

Miles of railroad, 39.

Assessed valuation of property of all kinds, \$3,663,204.

Mineral resources—Clays; coal; limestone; natural gas; petro leum; sandstone.

A fair quality of sub-bituminous coal is found near old Fort Griffin in the bed of the Brazos river, at low water.

A seam of coal has recently been found at depth of 675 feet on the Snalum ranch, 6 to 7 miles northeast of Albany.

The petroleum and natural gas fields at and near Moran are now being developed. The natural gas from this field is supplied to Moran, Albany and Cisco. The composition of a sample taken 16 miles from the wells was as follows:

Methane Nitrogen			 80.80 19.20
			100.00
B. t. u. p	er cu	. ft	 835.50

Samples of limestone from the Central Quarry Company, main office at Waco, gave the following analyses and tests:

	1	2	3	4	5
Silica	2.90	1.70	1.68	1.44	1.66
Alumina	0.60	0.80	0.11	0.74	2.03
Oxide of iron	0.94	0.78	1.09	0.86	0.11
Lime	51.69	$\boldsymbol{52.51}$	52.56	50.80	52.24
Magnesia				0.43	${f Trace}$
Carbonic acid	39.24	39.06	39.80	40.70	41.00
Sulphuric acid			*	0.24	
Loss on ignition	3.15	4.30	3.90	4.20	2.06
	98.53	99.15	99.14	99.41	99.10
Weight per cu. ft., lbs		158.60	153.30	148.50	163.60
Pounds of water absorbed per cu. ft	2.31	3.20	5.13	7.06	1.52
Crushed at, lbs. per sq. in	4,400	7,155	6,125	4,100	5,875

Some special tests have been made on clays and shales from the Blach ranch, 10 to 12 miles north of Albany, as follows: Average composition of six samples:

												P	eı	· cent.
Silica														62.70
Alumina							٠							17.97
Oxide of	iron.	٠.			٠.									6.94
Lime														0.92

P	
Magnesia	
Soda	
Potash	
Titanic acid	
Sulphuric acid	
Water	. 8.05
	
	100.25

These clays and shales are suitable for the manufacture of ordinary and pressed brick, hollow tile, paving brick, sewer pipe, etc. They occur in large deposits, within easy reach of abundant water, and in a particularly attractive part of the county. Their distance from rail, 10 to 12 miles, has prevented their development. It is probable that this part of the county is underlaid by a fair quality of sub-bituminous coal at depths varying from 500 to 700 feet. The extension of the Moran oil and gas field to the north may bring this section of the county within commercial possibilities.

SHELBY COUNTY.

Location—East Texas; borders on Louisiana.

County seat — Center; population, 1,684; elev. 345; lat. 31° 48'; long. 94° 11'; mag. dec. 7° 47'.

Area, square miles, 814.

Population, 26,423.

Railroads, 4.

Miles of railroad, 88.30.

Assessed valuation of property of all kinds, \$7,283,272.

Mineral resources—Bat guano; clays; fuller's earth; iron ore; lignite; limestone; sandstone; gravel.

Red and gray mottled and slip clays are found in Shelby county and have been utilized to some extent. No analyses or tests can be given.

A fuller's earth occurring on the property of G. L. Milledge, Timpson, gave J. C. Blake, A. & M. College, a bleaching power of 153, on refined cotton seed oil, as compared with English earth at 100.

The iron ores of Shelby county, so far as present information goes, are of too low grade to be used as a source of iron. The iron-gravel would probably make a good material for roads.

SHERMAN COUNTY.

Location—On north line of the Panhandle.

County seat—Stratford; population, 510; elev. 3,690; lat. $36^{\circ} 20'$; long. $102^{\circ} 4'$; mag. dec. $11^{\circ} 58'$.

Area, square miles, 900.

Population, 1,376.

Railroads, 1.

Miles of railroad, 25.91.

Assessed valuation of property of all kinds, \$3,399,211.

Mineral resources-Unknown.

SMITH COUNTY.

Location—Northeast Texas; east of the Neches River.

County seat—Tyler; population, 10,400; elev. 521; lat. $32^{\circ} 21'$; long. $95^{\circ} 17'$; mag. dec. $8^{\circ} 8' (1910)$.

Area, square miles, 984.

Population, 41,746.

Railroads, 3.

Miles of railroad, 109.

Assessed valuation of property of all kinds, \$14,127,621.

Mineral resources—Clays; fuller's earth; iron ore; lignite; limestone; salt; sandstone; mineral waters; gravel.

The pottery clays are represented by an analysis of a sample from near Tyler (Liebreich Pottery Co.), as follows:

				Pe	er cent.
Silica		. .			.78.22
Alumina					. 8.71
Oxide of iron					0.72
Lime					3.36
Magnesia					. 1.10
Soda					. 1.17
Potash			<i>.</i>		
Titanic acid .					0.17
Water			5.50
					99.40
Total fluxes					
TOTAL THIXES					6.80

This clay burned steel hard at temperature of 2,174 degrees F. Two other clays, the first from near Garden Valley and the second from near Tyler, had the following composition:

	Per	cent.
•	1	. 2
Silica	64.00	85.40
Alumina	24.17	10.02
Oxide of iron	3.23	2.18
Lime	Trace	0.10
Magnesia	Trace	None
Alkalies	3.50	Trace
Water	7.25	1.95
_	102.15	99.65
Total fluxes	6.73	2.28

Brown iron ore (limonite) of fair quality is found at many localities in this county, but has not been developed. The total iron ore area may be taken at 81 square miles.

The salines of Smith county were worked extensively many years ago, especially during the Civil War. At the Steen Saline, five miles east of Lindale, three thousand men were employed. The wells were shallow, and the salt was recovered by evaporation in pans, kettles, etc. Twenty furnaces were in operation, and the output was 12,000 sacks a day. A bushel of salt was obtained from 190 gallons of the water. Limestone occurs on both sides of the saline. At the Brooks Saline, 17 miles southwest of Tyler and 9 miles west of Bullard, there was also some activity. Twelve furnaces were in operation, and the output was 100 sacks a day. A bushel of salt was obtained from 300 gallons of the water. Borings conducted here a few years ago gave a water saturated with salt and fragments of rock salt half an inch across were brought to the surface. Near this locality limestone of the following composition was quarried and used as a flux in the State (iron) furnace at Rusk, Cherokee county:

	\mathbf{Per}	cent.
Silica		6.20
Alumina		3.75
Oxide of iron		0.25
Lime		
Magnesia		
Carbonic acid		
Loss on ignition		8.05
		99.95

Some native sulphur was also obtained from these borings. Composition of Riviere Mineral Water, Tyler:

Gra	ains per
U.	S. Gal.
Potassium sulphate	18.58
Lithium sulphate	2.27
Magnesium sulphate	69.83
Sodium sulphate1	00.46
Calcium sulphate1	16.85
Iron sulphate (ferrous)1	70.89
Iron sulphate (ferric)	37.72
	16.60

Analysis by J. W. Mallet, University of Virginia.

SOMERVELL COUNTY.

Location—North of the center; traversed by the Brazos river. County seat—Glenrose; population, 890; elev. 600; lat. 32° 13'; long. 97° 45'; mag. dec. 8° 44' (1912).

Area, square miles, 200.

Population, 3,931.

Railroads, none.

Assessed valuation of property of all kinds, \$1,297,755.

Mineral resources—Clays; limestone.

The mineral resources of Somervell county have not been investigated.

STARR COUNTY.

Location—Extreme southern part; borders on the Rio Grande. County seat—Rio Grande City; population, 2,085.

Area, square miles, 1,223 (includes portion of Brooks county). Population, 13,151.

Railroads, none.

Assessed valuation of property of all kinds, \$2,564,515.

Mineral resources—Clays; coal; natural gas; petroleum.

The mineral resources have not been investigated. The Laredo coal field probably extends into this county, but nothing definite is known about it. Explorations for natural gas and petroleum have not yet resulted in the discovery of productive wells.

STEPHENS COUNTY.

Location-North a little west of the center.

County seat—Breckenridge; population, 750; elevation, 1,200; lat. 32° 46′; long. 98° 53′; mag, dec. 9° 43′.

Area, square miles, 926.

Population, 7,980.

Railroad, 1.

Miles of railroad, 5.87.

Assessed valuation of property of all kinds, \$4,707,071.

Mineral resources—Asphalt rock; clays; coal; limestone; sandstone; gravel.

The asphalt rock is the bituminous sandstone found in Montague and Cooke counties. The occurrence is in the bed of the Brazos river at low water. A similar rock is found in Coke county to the southeast, in a creek which empties into the Colorado river near Edith postoffice.

The clays have not been investigated.

Sub-bituminous coal of fair quality is found near Crystal Falls and Breckenridge, but no mining operations, except for purely local needs, have been conducted in some years. Tests of the coal from near Breckenridge have been made by the Texas Central Railway with satisfactory results. On Coal Branch, a few miles west of Crystal Falls, there is an outcrop of coal in two branches each 12 inches in thickness, with a parting of bone and slate from 3 to 6 inches thick. The composition of the entire seam of 24 inches of coal is as follows:

	Per	cent.
Moisture		5.02
Volatile combustible matter		40.01
Fixed carbon		40.46
Ash		14.51
	1	00.00
Sulphur		5.12

From 20 to 25 years ago a good deal of work was done at the Jake Wizeart mine, near Crystal Falls, at the Berry Meadows mine; at the Wasson mine, on Albert Sidney Johnston property, etc. The extension of the Rock Island lines from Graham to Stamford, or of the Wichita Falls & Southern Railway from Newcastle to Cisco, would open the coal fields of Stephens county to good advantage.

From what is known of the coal seams it is not likely that any single bench would exceed 22 inches in thickness. The coal would probably earry from 12 to 15 per cent of ash and from 2 to 3.5

per cent of sulphur. This is not a coking coal, but has fine steaming qualities, and the lump is suitable for domestic purposes. The coal of this part of the state belongs to the Carboniferous formation, whereas the coals along the Rio Grande (Laredo and Eagle Pass fields) are Tertiary or late Cretaceous.

Considering the rapid growth of this part of the state, west and northwest of Fort Worth, and the extension of lines of rail, such as the Rock Island, the Wichita Falls & Southern, the Wichita Valley, the Mineral Wells & Northwestern, the Texas Central and its northwest connections from Stamford, the Kansas City, Mexico & Orient, the Gulf, Texas & Western, etc., it would appear that the coals of Stephens, Young, Jack and Palo Pinto counties are worthy of much more detailed investigation than they have yet received.

The Bureau of Economic Geology has undertaken to prepare an exhaustive report on the coal measure in Texas, and this work will be prosecuted as rapidly as the necessary means are provided.

From Mr. David Cole, Caddo, we received a sample of redbrown marble (dolomitic) which had the following composition and qualites:

	Per	cent.
Silica		0.63
Alumina,		0.39
Oxide of iron		
Lime		
Magnesia		12.07
Carbonic acid		41.14
		98.70

Weight of a cubic foot, pounds	.177.92
Pounds of water absorbed per cubic foot.	
Crushed at, pounds per square inch	.12,200

This stone takes a good polish and is of an attractive color and texture.

STERLING COUNTY.

Location-West Texas.

County seat—Sterling City; population, 532; elec. 2.295; lat. 31° 51′; long. 101° 0′; mag. dec. 10° 34′.

Area, square miles, 975.

Population, 1,493.

Railroad, 1.

Miles of railroad, 13.11.

Assessed valuation of property of all kinds, \$2,070,764.

Mineral resources—Unknown.

STONEWALL COUNTY.

Location-Northwest Texas; east of the Staked Plains.

County seat—Asperment; population, 600; elev. 1,773; lat. 33° 7'; long. 100° 13'; mag. dec. 11° 0'.

Area, square miles, 777.

Population, 5,320.

Railroads, 2.

Miles of railroad, 39.

Assessed valuation of property of all kinds, \$4,210,340.

Mineral resources—Alabaster; clays; copper ores; gypsum.

There is alabaster of good quality in Stonewall county, as also beds of gypsum. The clays have not been investigated. The copper ores are Permian, occurring as rich nodules of chalcocite, etc., in clays, similar to other deposits throughout the Permian area.

SUTTON COUNTY.

Location—Southwest of center.

County seat — Sonora; population, 783; lat. 30° 35'; long. 100° 40'; mag. dec. 9° 32'.

Area, square miles, 1,517.

Population, 1,569.

Railroads, none.

Assessed valuation of property of all kinds, \$2,966,423.

Mineral resources-Unknown.

SWISHER COUNTY.

Location-Northwest Texas; south of the Panhandle.

County seat — Tulia; population, 1,216; elev. 3,447; lat. 34° 34′; long. 101° 51′; mag. dec. 11° 17′.

Area, square miles, 850.

Population, 4,012.

Railroads, 1.

Miles of railroad, 30.99.

Assessed valuation of property of all kinds, \$4,733,747.

Mineral resources-Unknown.

TARRANT COUNTY.

Location-North Texas.

County seat—Fort Worth; population, 94,494; elev. 614; lat. 32° 45′; long. 97° 20′; mag. dec. 9° 5′.

Area, square miles, 900.

Population, 108,572.

Railroads, 12.

Miles of railroad, 287.71.

Assessed valuation of property of all kinds, \$97,696,872.

Mineral resources—Clays; gravel; limestone.

The clays, gravels and limestones have not been fully investigated. The quality of the brick made in the county is shown by the following tests on samples received from the Cobb Brick Company, Fort Worth:

Weight of a cubic foot, pounds	Red. 111.00	Brown-Red. 109.00	Speckled. 1/17.60
Per cent. of cells by volume		34.39	16.84
Volume of cells in 100 parts by			
weight	15.44	19.69	8.94
Pounds of water absorbed per cu. ft.	17.13	21.46	11.50
Crushed at, pounds per square inch	5,950	3,950	6,230

A sample of limestone received from W. S. Meller, Fort Worth, had the following composition and qualities:

Silica	0.50
Alumina	0.44
Oxide of iron	
Lime	
Carbonic acid	42.20
Loss on ignition	
	99.53
Weight of a cubic foot, pounds	
Pounds of water absorbed per cu. ft	
Crushed at, pounds per square inch	5,000

TAYLOR COUNTY.

Location—Northwest of center.

County seat—Abilene; population, 9,204; elev. 1,719.

Area, square miles, 900.

Population, 26,293.

Railroads, 4.

Miles of railroad, 105.30.

Assessed valuation of property of all kinds, \$14,114,950.

Mineral resources—Clays; sandstone; mineral waters; gravel.

The mineral resources have not been investigated. There are some localities where drilling for oil and gas could be recommended, but there are no deep wells from which records are available.

TERRELL COUNTY.

Location—Trans-Pecos Texas (west of the Pecos river).

County seat — Sanderson; population, 450; elev. 2,775; lat. 30° 9'; long. 102° 26'; mag. dec. 10° 16'.

Area, square miles, 2,776.

Population, 1,430.

Railroads, 1.

Miles of railroad, 61.82.

Assessed valuation of property of all kinds, \$3,828,624.

Mineral resources—Clays; limestone.

The mineral resources have not been investigated. Many excellent limestones are found contiguous to the Southern Pacific Railway.

TERRY COUNTY.

Location—West Texas; south of Staked Plains.

County seat—Brownfield; population, 275.

Area, square miles, 828.

Population, 1,474.

Railroads, none.

Assessed valuation of property of all kinds, \$1,909,552.

Mineral resources—Unknown.

THROCKMORTON COUNTY.

Location—Northwest of center.

County seat—Throckmorton; population, 500; lat. 33° 11'; long. 99° 10'; mag. dec. 9° 45'.

Area, square miles, 821.

Population, 4,563.

Railroads, none.

Assessed valuation of property of all kinds, \$4,241,138.

The mineral resources of Throckmorton county have not been investigated, although some deep drilling for oil in the northwest part of the county has been carried on during the last year.

TITUS COUNTY.

Location—Northeast Texas.

County seat—Mount Pleasant; population, 3137; elev. 405; lat. 33° 10'; long. 94° 58'; mag. dec. 7° 51'.

Area, square miles, 421.

Population, 16,422.

Railroads, 3.

Miles of railroad, 48.90.

Assessed valuation of property of all kinds, \$4,760,003.

Mineral resources—Clays; iron ore; lignite; sandstone; mineral waters.

The clays and iron ore have not been investigated.

The lignite mined near Cookville has the following composition:

Moisture	
Fixed carbon	
	100.00
Sulphur	

The composition of Red Mineral Springs water, from Mount Pleasant, is as follows:

		U. S. Gallon.
	Spring No. 1.	Spring No. 2.
Sodium oxide	$. \qquad 2.42$	2.30
Potassium oxide	$. \qquad 1.12$	0.22
Calcium oxide	. 2.07	1.28
Magnesium oxide	0.65	0.54
Anhydrous sulphuric acid	. 1.22	1.22
Humic acid	. 12.46	11.62
	19.94	17.18

Analyses by H. H. Harrington.

TOM GREEN COUNTY.

Location—West of center; traversed by the Concho river.

County seat — San Angelo; population, 10,321; elev. 1,847; lat. 31° 28′; long. 100° 26′; mag. dec. 9° 35′.

Area, square miles, 1,363.

Population, 17,882.

Railroads, 3.

15-Min.

Miles of railroad, 98.91.

Assessed valuation of property of all kinds, \$10,875,500.

Mineral resources—Clays; limestone; natural gas; petroleum; sandstone; dolomite; gold.

The easily fusible clays are represented by an analysis of a sample from near San Angelo, as follows:

Silica	Per	cent.
Silica	 	58.48
Alumina		18.23
Oxide of iron	 	7.54
Lime	 	1.24
Magnesia		3.83
Soda		2.88
Potash		1.15
Titanic acid		1.05
Water	 • • • • • • • • •	5.46
	9	99.86
Total fluxes	1	6 64

This clay burned to a dense, hard body at a temperature of

1,922 degrees F.

There are good limestones and sandstones in this county, but their qualities have not been investigated.

Near Christoval, on the Concho river, south of San Angelo, oil and gas have been found in comparatively shallow wells.

There are localities in the county where drilling operations could be conducted with hope of success. It is stated that some deep wells are to be bored at one or two places of considerable promise.

A sample of gold ore, said to be from near Mertzon, gave a value of \$237 per ton. This locality has not been prospected.

A sample of dolomite from Ben Ficklin had the following composition:

	Per	cent.
Silica		6.90
Alumina		
Oxide of iron		0.61
Lime		29.69
Magnesia		13.91
Carbonic acid		38.60
Loss on ignition		5.00
	_	99.90

The composition of the water from the Morgan Mineral Wells Company, Christoval, is as follows:

	Grains per U. S. Gallon.
Sodium chloride	
Sodium bicarbonate	
Calcium carbonate	
Aluminum sulphate	
Magnesium sulphate	
Silica	
	
	70.400

Hydrogen sulphide gas, 8.54 cu. in. per gallon. Analysis by R. H. Needham.

Two samples of mineral water from the Concho Land Company, Carlsbad and San Angelo, had the following composition:

Grains	per U.	S.	Gallon
Silica 3.3	39		1.03
Oxide of iron and alumina 0.5	53		0.16
Sodium chloride192.4	43	1	13.75
Potassium chloride 1.			
Magnesium chloride 6.8			
Magnesium sulphate 98.			10.31
Calcium sulphate 74.			80.23
Calcium bicarbonate 47.3			22.90
	_		
424.4	45	2	28.38

Analyses by W. T. Garbade, Medical Department, University of Texas.

TRAVIS COUNTY.

Location—Southeast of center; traversed by the Colorado river.

County seat — Austin; population, 29,860; elev. 466; lat. 30° 16′; long. 97° 46′; mag. dec. 8° 17′.

Area, square miles, 1,036.

Population, 55,620.

Railroads, 3.

Miles of railroad, 87.20.

Assessed valuation of property of all kinds, \$38,644,950.

Mineral Resources—Bat guano; clays; limestone; marble; petroleum; sulphate of strontium (celestite); mineral waters; traprock for road metal; gravel.

The calcareous brick clays are represented by analyses of two samples, both from near Austin, as follows:

. · · · · 1	2
Silica 53.60	34.60
Alumina 9.00	15.02
Oxide of iron 2.60	3.02
ime 16.80	21.48
Magnesia 1.20	0.15
Soda Trace	1.43
Potash 1.80	1.43
Titanic acid 0.80	0.96
Water 2.72	6.00
Carbonic acid 11.64	15.60
100.16	99.60
Total fluxes 23.40	27.42
Became viscous at, deg. F 2,246	2,260

A sample of so-called Caen marble from near Austin had the following composition and qualities:

		Per cent.
Silica		0.90
Alumina		
Oxide of iron		0.14
Lime		
Carbonic acid		42.40
Loss on ignition.		$\dots 1.71$
		99.17
Weight of a cubic		
Pounds of water a		
Crushed at, pound	ls per square inch	8,882

Travis county is particularly rich in heavy deposits of limestone of excellent quality.

Among the earlier investigations of these limestones the tests made by Colonel D. W. Flagler, U. S. A., at the Rock Island Arsenal, Rock Island, Illinois, may be quoted. These tests were made for the Capitol Commission, 1881, and the results were as follows:

	1	2	3
Weight per cubic foot, pounds	162.03	134.76	135.86
Pounds of water absorbed per cu. ft	None	None	None
Crushed at, pounds per square inch	8,207	3,422	2,279

- Fossiliferous limestone, Loomis & Christian's quarry. This is the so-called Caen marble.
- 2. Austin Quarry. Stone used in building the Travis county courthouse.
- Hancock Quarry, 8 miles from Austin. Probably at or near Spicewood Springs.

During the last months the Bureau of Economic Geology has made many analyses and tests on limestones from Travis county. the samples weighing from 30 to 40 pounds. Of these, ten are selected as fairly representing the range of composition and qualities, as follows:

	1.1.7		W 11 10 10							
	1	2	3	4	5	6	7	8	9	10
Silica	2.30 5.82	0.50					1.30			
Ox. ironLime	1.52 45.21	1.82	0.90	1.20	1.35	1.08	0.60	0.75	0.60	0.30
Carb. acid Loss on ign	38.10	42.50	43.30	42.48	42.49	39.44	42.44	41.74	41.50	40.40
Loss on Ign.	99.45			1.92			A - 20%			100.23
	99.40	99.36	99.94	100,80	99.00	94.61	99,02	90.34	90,00	100.25
Wt. per cu. ft, lbs Lbs. water absorbed per	162	159	165	165	165	156				165
cu. ft. Crushed at, lbs. per sq. in.	2.76				0.77					1.23 $13,875$
ozometa at, 105. per aq. III.	10,000	0,000	12,000	10,100	,,,,,,,	12,120				,010

Explanation:

About a mile from Manchaca, on Austin-Manchaca road, and about ¼ mile west of the I. & G. N. Ry. Heavy exposure. 1.

Barton Creek, near Austin, about a mile above Barton Spring. Heavy exposure. Contains also 1.01 per cent. of magnesia.

3.

Austin White Lime Co., McNeil. Old pit on west side. Near I. & G. N. and A. & N. W. Rys. Good exposure.

About 6 miles from Austin, on upper Manchaca road, near Oak Hill switch from I. & G. N. and M., K. & T. Rys. Good ex-

5. First creek north of Duval section-house, I. & G. N. Ry., at crossing of wagon road and railroad, about 12 miles north-

west of Austin. Light exposure. Hamilton place, 8 miles northwest of Austin, on Burnet road, about 500 yards west of the I. & G. N. Ry. Contains also 6. 4.24 per cent. magnesia and 0.50 per cent. of sulphuric acid. Heavy exposure.

7.

Old Johnson quarry, Deep Eddy, Colorado river, Austin.
Spicewood Springs, 7 miles northwest of Austin and within ½
mile of the I. & G. N. Ry. Contains also 3.54 per cent. of
sulphuric acid. Good exposure.

Old Taylor quarry at lime kiln, near end of I. & G.N. Ry.

track to Austin dam. Good exposure.

Old Walsh quarry, near end of I. & G. N. Ry. track to Austin dam. Good exposure. Stone from this quarry used in making concrete for dam.

The Dry Creek quarry stone, a few miles northwest of Austin, has the following composition and qualities:

														•	-	-	cent.
Silica												٠.					1.07
Alumina		 															0.22
Oxide of	iron																0.71
Lime								٠.	٠.				٠.				52.91

Carbonic Loss on	acidignition		41.28
		_	98.10
Pounds o	f a cubic foot, pounds f water absorbed per cu. ft at. pounds per sq. in		5.38

The average composition of the white lime made at McNeil by the Austin White Lime Company is as follows, analyses by J. R. Bailey, University of Texas:

Per	
Insoluble siliceous matter	0.20
Oxides of iron and alumina	0.15
Lime	97.65
Magnesia	
Sulphuric acid	\mathbf{None}
Loss at white heat	1.21
Tarangan dan kacamatan dan Salah Barangan dan Barangan dan Kabupatèn Barangan dan Kabupatèn Barangan dan Baran	99.21

A heavy, asphaltic oil has been found near Watters Park and between this place and Dessau at depths varying from 300 to 600 feet, but it has not been brought into use.

The deposits of celestite (sulphate of strontium) on Mount Barker and Mount Bonnell, near Austin, have not come into This locality gives a celestite of exceptional commercial use. purity. It occurs as "pockets" of greater or lesser extent in Cretaceous limestone. The trap rock (nephelite basalt) that forms Pilot Knob, 10 miles southeast of Austin and 5 miles from the I. & G. N. and M., K. & T. Rys. is an excellent material for concrete and for road-making. It has a weight of nearly 200 lbs. per cubic foot and a maximum crushing strength of more than 46,000 pounds per square inch. It is practically the same rock that occurs near Knippa, in Uvalde county, on the Southern Pacific Ry., about 80 miles west of San Antonio. At this place there is a modern crusher plant of a capacity of 750 tons a day and a considerable amount of the crushed and sized material has been used in San Antonio. The deposits in Travis county are the only ones known to exist within easy reach of shipping facilities in all of central and north central Texas. This and the Knippa stone are the best road-making materials known to occur in Texas.

A deposit of this stone is also found in Travis Heights, South Austin, within a mile of the I. & G. N. Ry., the M., K. & T. Ry.

and the H. & T. C. Ry. It is of unknown extent, but steps are being taken to investigate the locality thoroughly.

The composition of the mineral water from the well at the Capitol, depth 1,511 feet, is as follows:

	Grains per
	U. S. Gallon.
Socium chloride	42.945
Sodium sulphate	52.360
Magnesium sulphate	14.140
Calcium sulphate	3.752
Calcium carbonate	10.745
Potash	Trace
Silica	
Alumina }	Trace
Oxide of iron }	

124.747

Analysis by L. Magnenat.

The total depth of this well was 1,554 feet and the flow was 86,400 gallons per 24 hours.

Composition of the Champion Mineral Water, near junction of the small branch with main channel of Bull creek:

		rains per
Hypothetical combination—		
Potassium chloride		Trace
Sodium chloride		55.343
Sodium sulphate		153.376
Magnesium sulphate		91.098
Calcium sulphate	٠.	7.330
Calcium bicarbonate		78.390
Iron bicarbonate		0.099
Alumina	٠.,	0.303
Silica		0.320
v	-	

386.259

Free carbonic acid, cu. inches per gal... 1,7088 Analysis by H. W. Harper, University of Texas.

TRINITY COUNTY.

Location—East Texas; southwest of the Neches river. County seat — Groveton; population, 1,076; elev. 323; lat. 31° 4′; long. 95° 7′; mag. dec. 8° 0′ (1911).

Area, square miles, 704.

Population, 12,768.

Railroads, 6.

Miles of railroad, 102.32.

Assessed valuation of property of all kinds, \$6,594,911.

Mineral resources—Clays; lignite; natural gas; sandstone; gravel.

The clays have not been investigated. There is a good deal of lignite in the county, but no producing mines. At Hyde's Bluff, on the Trinity river, there is an outcrop of lignite 4 feet thick, which has the following composition:

	Pe	r cent.
Moisture		13.10
Volatile combustible matter	. 	41.65
Fixed carbon		
Ash		
	•	100.00
Sulphur		

At Westmoreland Bluff is another lignite outcrop. A sample of natural gas taken from a spring a mile east of Trinity gave, on analysis, 929 B. t. u. per cubic foot, an excellent result.

TYLER COUNTY.

Location—Southeast Texas; west of the Neches river. County seat—Woodville; population, 650; elev. 232; lat. 30° 46′; long. 94° 22′; mag. dec. 7° 46′ (1912).

Area, square miles, 925.

Population, 10,250.

Railroads, 4.

Miles of railroad, 56.27.

Assessed valuation of property of all kinds, \$5,269,551.

Mineral resources—Asphalt rock; clays; sandstone; gravel.

The asphalt rock is a bituminous sandstone similar to rock in Jasper county.

The sandy brick clays of this county are represented by an analysis of a sample from Colmesneil, as follows:

	Per	cent.
Silica		90.00
Alumina	.	4.60
Oxide of iron		1.44
Lime		0.10
Magnesia		0.10
Soda		Trace
Potash		Trace
Titanic acid		0.70
Water	• • •	3.04
	_	99.98
Total fluxes		F 1 3

This clay did not fuse at a temperature of 2,570 deg. F., but melted to a glass at 3,038 deg. F.

We have received many samples of sandstone from D. M. Picton & Co., Beaumont, representing the quarries at Rockland. Of these ten are selected as showing the different kinds of material, as follows:

- 1		1							
1	2	3	4	5	6	7	8	9:	10
									85.94
									6.12
	4.00	1.10	2.83					1.89	2.20
0.33	0.31	0.42		0.62	0.54	0.22	0.11		0.50
	0.27					0.66			
5.42						3.44			5.40
99.62	100.18	100.26	100.00	100.91	99.49	99.82	100.45	99:95	100.22
138.6		117.9	131.3	143.4	141.5	124.3	129.4	137.7	135.2
3.68	6.24		5.54	0.77					
6,815	4,750	2,125	3,950	4,875	7,250	2,800	3,725	5;550	5,000
	8.21 2.83 tr. 0.33 0.30 0.23 5.42 99.62	82.30 84.20 8.21 5.42 2.83 4.08 tr. 0.33 0.31 0.23 0.37 5.42 5.80 99.62 100.18 138.6 132.9 3.68 6.24	82.30 84.20 81.00 8.21 5.42 10.58 2.83 4.08 1.10 tr. 0.33 0.31 0.42 0.30 0.27 0.57 5.42 5.80 7.16 99.62 100.18 100.26 138.6 132.9 117.9 3.68 6.24 11.94	82.30 84.20 81.00 80.30 8.21 5.42 10.58 7.87 10.58 7.87 10.33 0.31 0.42 0.87 0.30 0.23 0.37 1.51 5.42 5.80 7.16 6.62 99.62 100.18 100.26 100.00 138.6 132.9 117.9 131.3 3.68 6.24 11.94 5.54	82.30 84.20 81.00 80.30 84.75 8.21 5.42 10.58 7.87 6.80 tr. 0.33 0.31 0.42 0.87 0.62 0.30 0.31 0.42 0.87 0.62 0.30 0.37 1.51 0.85 5.42 5.80 7.16 6.62 5.46 99.62 100.18 100.26 100.00 100.91 138.6 132.9 117.9 131.3 143.4 3.68 6.24 11.94 5.54 0.77	82.30 84.20 81.00 80.30 84.75 88.60 8.21 5.42 10.58 7.87 6.80 4.42 2.83 4.08 1.10 2.83 2.20 2.20 2.20 17.0 0.33 0.31 0.42 0.87 0.62 0.54 0.30 0.23 0.37 1.51 0.85 0.24 0.36 0.23 0.37 1.51 0.85 0.99.62 100.18 100.26 100.00 100.91 99.49 138.6 132.9 117.9 131.3 143.4 141.5 3.68 6.24 11.94 5.54 0.77 4.34	82.30 84.20 81.00 80.30 84.75 88.60 87.40 8.21 5.42 10.58 7.87 6.80 4.42 5.43 1.00 2.83 2.20 2.20 2.67 17. 0.33 0.31 0.42 0.87 0.62 0.64 0.22 0.30 0.23 0.37 1.51 0.85 0.86 0.24 0.23 0.37 1.51 0.85 0.85 0.99 0.82 100.18 100.26 100.00 100.91 99.49 99.82 138.6 132.9 117.9 131.3 143.4 141.5 124.3 3.68 6.24 11.94 5.54 0.77 4.34 11.82	82.30 84.20 81.00 80.30 84.75 88.60 87.40 88.60 82.15 5.42 10.58 7.87 6.80 4.42 5.43 5.68 ftr. 0.33 0.31 0.42 0.87 0.62 0.54 0.22 0.11 0.30 0.23 0.37 1.51 0.85 0.24 0.36 0.66 0.24 0.52 0.57 0.62 0.54 0.52 0.51 0.58 0.66 0.24 0.58 0.58 0.68 0.24 0.58 0.58 0.68 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.5	82.30 84.20 81.00 80.30 84.75 88.60 87.40 88.60 86.40 8.21 5.42 10.58 7.87 6.80 4.42 5.43 5.66 6.81 tr. 0.33 0.31 0.42 0.87 0.62 0.54 0.22 0.11 0.25 0.30 0.23 0.37 1.51 0.85 7.62 0.54 0.22 0.11 0.25 0.24 0.38 0.87 0.62 0.54 0.22 0.11 0.25 0.24 0.38 0.86 0.42 0.54 0.54 0.55 0.42 0.59 7.16 6.62 5.46 3.04 3.44 5.00 4.60 99.62 100.18 100.26 100.00 100.91 99.49 99.82 100.45 99.95 138.6 132.9 117.9 131.3 143.4 141.5 124.3 129.4 137.7 3.68 6.24 11.94 5.54 0.77 4.34 11.82 8.69 5.24

The Rockland sandstone is principally used for rip-rap.

UPSHUR COUNTY.

Location-Northeast Texas.

County seat—Gilmer; population, 1,484; elev. 370; lat. 32° 43'; long. 94° 56'; mag. dec. 7° 59' (1911).

Area, square miles, 527.

Population, 19,960.

Railroads, 4.

Miles of railroad, 86.

Assessed valuation of property of all kinds, \$6,067,700.

Mineral resources—Clays; iron ore; lignite.

The clays have not been investigated.

Brown iron ore (limonite) occurs in the northeast part of the county; near Coffeeville, three miles south and three miles southeast; near Gilmer, near Omega Postoffice, etc. The total iron ore area within the county is thought to be about ten square miles, but it is not known how much of this would be ore-bearing in a commercial sense. The ores are of medium quality, so far as present information goes, although an ore of 56 per cent of iron occurs three miles southeast of Coffeeville and a 50 per cent ore is found three miles southwest of this place. Two analyses of the lignite from near Gilmer are as follows:

Moisture	$egin{array}{c} 42.80 \ 33.76 \ 12.04 \end{array}$	$2 \\ 25.20 \\ 37.50 \\ 26.09 \\ 11.21$
	00.00	100.00
Sulphur	0.88	1.20 7,650

UPTON COUNTY.

Location—West Texas.

County seat—Upland; population, 35.

Area, square miles, 1,190.

Population, 501.

Railroads, 1.

Miles of railroad, 36.

Assessed valuation of property of all kinds, \$2,672,975.

Mineral resources—Unknown.

UVALDE COUNTY.

Location—Southwest Texas.

County seat—Uvalde; population, 3,998; elev. 937; lat. 29° 13'; long. 99° 48'; mag. dec. 9° 48'.

Area, square miles, 1.759.

Population, 11,223.

Railroads, 2.

Miles of railroad, 51.64.

Assessed valuation of property of all kinds, \$9,008,809.

Mineral resources—Asphalt rock; bat guano; coal; lignite; limestone; trap rock for road; metal.

The asphalt rock is of two distinct kinds, bituminous limestone and bituminous sandstone.

The chief deposit of bituminous limestone occurs at Carbonville, six miles south of Cline, a station on the Southern Pacific Railway, with which it is connected by a spur track.

The plant at this place was originally designed for the extraction of bitumen with naphtha. In 1895 there were shipped 450 tons of "litho-carbon," the selling price being \$50.00 a ton. New York. Two classes of product seem to have been made, hard gum (mastic) and soft gum. These substances do not seem to have been produced separately after January, 1895, but dur-

ing two months in 1894 and one month in 1895, the total production was 1,922,984 pounds, or 511 tons of 2,000 pounds.

The extraction with naphtha seems to have been suspended in January, 1895, and was not resumed until 1899. In this year, the production of gum was 1,647,696 pounds, or 823.8 tons. During the three months of 1900, when the plant was running, the production of gum was 516,136 pounds, or 258 tons. The total amount of gum produced was about 2,043 tons. For several years no attempt has been made to extract the bitumen, the work being confined to mining the rock and shipping it for paving purposes. It has been used in San Antonio, Waco, etc., and some shipments were made to Toledo, Ohio, and to Shreveport, Louisiana. When properly prepared and laid on a foundation suitable for this kind of material, there seems to be no reason why this rock should not make excellent pavements.

The average of many analyses of this rock shows that it contains from 14 to 17 per cent of total bitumen, with 80 to 85 per cent. of carbonate of lime, a small amount of silica, alumina and oxide of iron, with sulphur up to 1 per cent. The asphaltene varies from 50 to 75 per cent. of the total bitumen.

Six miles south of Carbonville, on the Smyth-Nunn ranch, there is another heavy deposit of bituminous limestone of the following composition:

	Pe	r cent.
Asphaltene	 	6.73
Petrolene	 	9.28
Carbonate of lime	 	78.73
Silica	 	5.26
Sulphur	 	1.50
Total bitumen	 	16.01

At Waxy Falls, on the Nueces river, about twelve miles west of south from Uvalde, there is a calciferous bituminous sandstone on W. P. May's ranch, of the following composition:

		Per cent.
Asphaltene		4.19
Petrolene		
Carbonate of lime Silica Sulphur		79.27
Total bitumen	_1014	9 4 7

Other analyses of this stone show total bitumen 14 per cent. The silica varies from 74 to 82 per cent, and the carbonate of lime from 7 to 14 per cent. This bituminous sandstone has also been used for street pavements.

The active competition of bitulithic and other forms of artificial asphalt pavements, of paving brick, etc., have interfered with the development of the Uvalde county natural asphalt rocks. A large business might have been built up had the same care in the preparation and laying of this material been shown as has been the case with competing materials. This is particularly true of the foundations on which the paving proper is laid, for without such adequate sub-courses no paving can be expected to give the best-service.

The outcrops of sub-bituminous coal along the Nueces river have not been prospected, and but little is known concerning the quality or extent of the beds.

The deposit of trap rock (nephelite basalt) near Knippa constitutes the best road-making material known to exist in Texas. A modern crushing plant of a capacity of 750 tons a day has been built, and considerable shipments have been made to San Antonio, etc., for concrete. This stone has a weight of nearly 200 lbs. per cubic foot, and a crushing strength of more than 30,000 lbs. per square inch. The Pilot Knob trap, Travis county, is a similar stone. The results of further examinations of these rocks will appear in the Bulletin on Road Making Materials now. in preparation, by the Bureau of Economic Geology.

The existence of kaolin in Uvalde county has been reported, but we have no positive information concerning it.

VAL VERDE COUNTY.

Location—Southwest Texas.

County seat — Del Rio; population, 4,000; elev. 948; lat. 29° 22'; long, 100° 52'; mag. dec. 9° 58'.

Area, square miles, 3,034.

Population, 8,613.

Railroads, 1.

Miles of railroad, 124.58.

Assessed valuation of property of all kinds, \$8,905,516.

Mineral resources—Limestone.

The mineral resources have not been investigated.

VAN ZANDT COUNTY.

Location-Northeast Texas.

County seat—Canton; population, 600; lat. 32° 33'; leng. 95° 52'; mag. dec. 8° 21' (1912).

Area, square miles, 877.

Population, 25,651.

Railroads, 2.

Miles of railroad, 32,69.

Assessed valuation of property of all kinds, \$9,541,435.

Mineral resources-Clays; iron ore; lignite; salt.

The clays have not been investigated.

Lignite occurs in many parts of the county, as at Grand Saline, along the Sabine river, at Wills Point, etc. The composition of the lignite mined at Wills Point is as follows:

		cent.
Moisture		27.20
Volatile combustible matter		40.90
Fixed carbon		27.00
Ash		4.81
	1	100.00
Sulphur		0.40
B. t. u. per pound		7,682

There is a small area of brown iron ore (limonite) in the southeastern part of the county, but the quality is not good. The total area is probably about one square mile.

This county has been for some years an important producer of salt, obtained from brine. The industry centers around Grand Saline, and extensive improvements have recently been made, especially by B. W. Carrington & Co., in the process of manufacture. At this plant the pan house contains three triple-effect vacuum evaporating pans; the brine is taken from the wells to the settlers, thence to these pans, then the water evaporated in vacuum and the salt delivered by elevators from the bottom of these pans to storage bins in the top of the same building. In these bins the salt is drained and is then distributed to a belt conveyor which carries it to the store-house. From this store-house, the cured salt is taken to the dairy or table salt mill, where it is kiln-dried in a rotary direct heat coke drier. It then goes to a

system of screens in the top of the building, where it is prepared into the various grades to meet demand.

The advantage of the vacuum system of evaporation over the old open grainer method, is said to be, first, great economy in fuel; and, second, the production of a uniform cube crystal salt in place of the irregular flaky grade produced by the grainers.

The Carrington plant is designed for a production of a little over 1,100 barrels daily.

VICTORIA COUNTY.

Location—Southeast Texas.

County seat — Victoria; population, 3,673; elev. 93; lat. 28° 48′; long. 97° 0′; mag, dec. 8° 59′.

Area, square miles, 883.

Population, 14,990.

Railroads, 2.

Miles of railroad, 90.

Assessed valuation of property of all kinds, \$13,529,180.

Mineral resources—Clays.

The mineral resources have not been investigated.

WALKER COUNTY.

Location—East Texas.

County seat—Huntsville; population, 2,073; elev. 400; lat. 30° 42′ long. 95° 32′; mag. dec. 8° 16′ (1912).

Area, square miles, 754.

Population, 16,061.

Railroads, 3.

Miles of railroad, 54.75.

Assessed valuation of property of all kinds, \$5,831,925.

Mineral resources—Clays; fuller's earth, lignite; natural gas; petroleum; sandstone; gravel.

The clays (including fuller's earth) have not been investigated. Lignite is known to occur, but has not been developed. An analysis of a small sample of lignite from a locality south of the Trinity river and about twelve miles north of Huntsville was as follows:

Moisture				Per cent. 13.73
Volatile combustible matter. Fixed carbon				45.95 $$ 37.22
Ash	•••	• • •	•••	100.00

This seam is said to be from 10 to 12 feet thick, but no attempt has been made to mine it.

Natural asphalt has been found in the same locality, but nothing is known concerning the extent, etc.

West of the lignite area there is a heavy outcrop of a sandstone that would make excellent material for rip-rap, railroad ballast, etc., but it has not been developed. Petroleum and natural gas have been found in deep drilling, both north and west of Huntsville, but no commercial fields have been opened.

WALLER COUNTY.

Location-Southeast Texas.

County seat—Hempstead; population, 1,848; elev. 251; lat. 30° 8'; long. 96° 10'; mag. dec. 7° 57'

Area, square miles, 510.

Population, 12,138.

Railroads, 3.

Miles of railroad, 40.53.

Assessed valuation of property of all kinds, \$5,364,278.

Mineral resources—Clays; gravel.

The mineral resources have not been investigated.

WARD COUNTY.

Location—West Texas; southeast of New Mexico.

County seat—Barstow; population, 500; elev. 2,557.

Area, square miles, 858.

Population, 2,389.

Railroads, 1.

Miles of railroad, 43.50.

Assessed valuation of property of all kinds, \$4,462,366.

Mineral resources—Salt; sandstone.

Salt occurs in Ward county as encrustations, etc., in old lake basins and depressions. It is used locally.

The red sandstone, near Barstow, has been used to a considerable extent. The work here was suspended several years ago, but the demand for this stone in the addition to the Bexar county courthouse has caused a resumption of work temporarily. The composition and qualities of this red sandstone are as follows:

Silica Alumina .					•									-		_	70.00
				_													7.50
Oxide of ir																	3.00
Lime																	8.00
Magnesia																	0.30
Soda																	2.00
Potash																	2.50
Carbonie a	cid	l															6.00
Water																	0.40
			,													_	99.70

WASHINGTON COUNTY.

Crushed at, pounds per sq. inch..... 2,000

Location-Southeast Texas.

County seat — Brenham; population, 4,718; elev. 332; lat. 30° 10′; long. 96° 23′; mag. dec. 8° 57′ (1912).

Area, square miles, 568.

Population, 25,561.

Railroads, 3.

Miles of railroad, 87.34.

Assessed valuation of property of all kinds, \$11,072,190.

Mineral resources—Clays; natural gas; opalized wood, fuller's earth; gravel.

The clays have not been investigated.

The quality of the brick made in the county is shown by the following results of the examination of a sample from the Brenham Pressed Brick Company, several years old:

Weight per cubic foot, pounds	101.10
Per cent. of cells by volume	37.37
Volume of cells in 100 parts by weight	23.08
Pounds of water absorbed per cu. ft	23.33
Crushed at, pounds per square inch	3.358

Fuller's earth of good quality occurs at and near Burton, but it has not been developed. Of two samples examined by J. C. Blake, one gave a bleaching power on refined cotton seed oil of 64, and the other of 168, English earth being taken as 100.

More than thirty years ago natural gas under good pressure was found in a well drilled near Burton, but records are not now available.

WEBB COUNTY.

Location—South Texas.

County seat — Laredo; population, 14,855; elev. 438; lat. 27° 32'; long. 99° 31'; mag. dec. 8° 50'.

Area, square miles, 3,421.

Population, 22,503.

Railroads, 3.

Miles of railroad, 124.94.

Assessed valuation of property of all kinds, \$7,980,413.

Mineral resources — Clays; coal; natural gas; sandstone; gravel.

The buff-burning semi-refractory clays are represented by the following average of four samples from Minera and Cannel, shaly clays from below the coal:

	Per	cent.
Silica		60.41
Alumina		22.43
Oxide of iron		1.90
Trime		0.44
Magnesia		0.61
Soda		0.24
Potash	-	0.45
Titanic acid		1.30
Water		6.00
Organic matter	-	6.50
Organic matter	• • •	0.00
	-	100.28

These clays will vitrify at a temperature of about 2,400 degrees F., and will become viscous below 3,000 degrees F.

The calcareous brick clays are represented by an analysis of a sample from Laredo, as follows:

16-Min.

Per	cent.
Silica	59.03
Alumina	11.19
Oxide of iron	2.77
Lime	12.16
Magnesia	0.80
Soda	0.18
Potash	Trace
Titanic acid	1.05
Carbonic acid	9.60
Water	2.10
——————————————————————————————————————	
	98.88
Total fluyes	15 01

This clay became viscous at a temperature of 2,318 degrees F. The quality of the brick made in Webb county is shown by the following results of tests:

	1	2	3	4	5
Weight per cu. ft., pounds Per cent. of cells by vol-	. 95.8	97.85	93.60	110.10	96.29
ume	41.79	40.76	43.90	32.76	42.04
Volume of cells in 100		1			
parts by weight		26.00	29.27	18.57	27.26
Pounds of water absorbed					
per cu. ft	26.07	25.44	27.39	20.44	26.24
Crushed at, pounds per					
sq. inch	1,442	1,776	1,027	1,263	1,007

- No. 1 yellow, Geo. R. Page & Co., Laredo. No. 2 eye-brick, Geo. R. Page & Co., Laredo.
- No. 3 white brick, Geo. R. Page & Co., Laredo. Face brick, Reiser Pressed Brick Co., Laredo. Derby Brick Manufacturing Co., Laredo.

For a number of years Webb county has been an important producer of sub-bituminous coal. The mines are at Darwin, Cannel, Minera, etc., along the R. G. & E. P. Ry., running up the Rio Grande from Laredo. The composition of this coal is given by the following average of 13 analyses:

	Per cent.
Moisture	2.96
Volatile combustible matter	47.42
Fixed carbon	
Ash	13.93
	100.00
Sulphur	2.32
B. t. u. per pound	

The town of Laredo is supplied with natural gas by the Border Gas Company from wells at Reiser, 18 miles east of Laredo. The average B. t. u. per cubic foot of this gas is 746, although one sample ran as high as 948.

WHARTON COUNTY.

Location—Southeast Texas.

County seat — Wharton; population, 1,505; elev. 111; lat. 29° 18'; long. 96° 4'; mag. dec. 8° 18'.

Area, square miles, 1,137.

Population, 21,123.

Railroads, 4.

Miles of railroad, 106.42.

Assessed valuation of property of all kinds, \$15,869,939.

Mineral resources—Clays; gravel.

The calcareous brick clays are represented by the following average of three samples from near Wharton:

		Per	cent.
Silica		 	64.85
Alumina			9.30
Oxide of iro	n	 	3.02
Lime			9.26
Magnesia			0.49
Soda			0.89
Potash			0.17
Titanic acid			0.97
Water			3.51
Carbonic aci			7.31
			99.77

These clays become viscous at a temperature of 2,100 degrees F.

WHEELER COUNTY.

Location—East line of Panhandle.

Total fluxes

County seat—Wheeler; population, 200.

Area, square miles, 851.

Population, 5,258.

Railroads, 1.

Miles of railroad, 33.38.

Assessed valuation of property of all kinds, \$3,811,538

Mineral resources—Unknown.

WICHITA COUNTY.

Location-North Texas; borders on the Red river.

County seat-Wichita Falls; population, 8,200; elev. 946.

Area, square miles, 606.

Population, 16,094.

Railroads, 6.

Miles of railroad, 71.88.

Assessed valuation of property of all kinds, \$18,507,195.

Mineral resources — Clays; copper ores; limestone; natural gas; petroleum; sandstone; gravel.

The clays have not been fully investigated, but a large brick and tile plant at Wichita Falls utilizes the deposits near that city.

The copper ores are Permian and have not been utilized. They occur as chalcocite and as replacements after wood (malachite, etc.)

Wichita is one of the important oil producing counties. The Electra field came into production in 1911, and to the close of 1913 yielded 11,964,627 barrels valued at about \$10,169,000.

The geology of the Wichita county oil fields has been investigated by J. A. Udden, geologist for the Bureau of Economic Geology, and his report was issued in 1912 as Bulletin No. 246, "The Oil and Gas Fields of Wichita and Clay Counties." It may be obtained on application to the Bureau.

WILBARGER COUNTY.

Location-North Texas; borders on Red river.

County seat — Vernon; population, 3,195; elev. 1,205; lat. 34° 9'; long, 99° 18'; mag. dec. 9° 52'.

Area, square miles, 923.

Population, 12,000.

Railroads, 3.

Miles of railroad, 58.90.

Assessed valuation of property of all kinds, \$11,466,140:

Mineral resources—Clays; copper ores; possibly natural gas and petroleum.

The clays have not been investigated.

The copper ores are Permian and have not been utilized. It is possible that the Wichita county oil fields extend into this county.

WILLACY COUNTY.

Location—Extreme southern part; borders on Baffin Bay.

County seat—Sarito; population,; elev. 38.

Area, square miles,

Population, (organized after 1910).

Railroads, 1.

Miles of railroad, 47.60.

Assessed valuation of property of all kinds, \$2,162,307.

Mineral resources—Clays; salt, in old salt lakes.

The mineral resources have not been investigated.

WILLIAMSON COUNTY.

Location-Near center, southeast.

County seat—Georgetown; population, 3,096; elev. 442; lat. 30° 39′; long. 97° 40′; mag. dec. 8° 33′.

Area, square miles, 1,169.

Population, 42,228.

Railroads, 4.

Miles of railroad, 146.88.

Assessed valuation of property of all kinds, \$32,344.520.

Mineral resources—Bat guano; clays; gold; limestone; dolomite; petroleum; mineral waters; gravel.

The calcareous brick clays are represented by an analysis of a sample from near Taylor, as follows:

	Per cent.
Silica	\dots 21.72
Alumina	
Oxide of iron	
Lime	
Magnesia	0.95
Soda	Trace
Potash	Trace
Titanic acid	
Water	
Carbonic acid	$\ldots 28.44$
	99.73
Total fluxes	39.72

This clay became vitrified below 2,390 degrees F.

The quality of the brick made is shown by the following tests on a sample from the Taylor Brick Company, several years old:

Weight per cubic foot, pounds	110.90
Per cent. of cells by volume	32.98
Volume of cells in 100 parts by weight	18.57
Pounds of water absorbed per cubic foot	20.59
Crushed at, pounds per square inch	3,656

In 1883 gold ore was discovered in limestones twenty miles north of Georgetown. Some of the samples carried as much as \$2,500 a ton in gold, but a careful examination of the locality failed to show commercial possibilities. The gold was carried in a decomposed limestone heavily stained with oxide of iron, which was probably derived from pyrite, by oxidation. An analogous occurrence is in Tom Green county, near Mertzon, where a similar material carried \$237 a ton in gold.

Williamson county contains many varieties of limestone suitable for building and road purposes, for the manufacture of white lime, etc.

From a considerable number of analyses and tests we select five as typical. These are as follows:

	1	2	3	4	5
Silica	1.00	0.39	1.40	5.96	0.96
Alumina	1.30	0.31	0.36	2.00	None
	race	Trace	Trace	0.82	4.80
Lime 5	5.00	55.06	54.80	41.66	50.20
Magnesia T	race	0.11	0.48	7.51	None
Carbonic acid 4	2.90	42.94	41.90	41.30	38.73
Loss on ignition	••••		1.76	1.24	4.67
10	0.20	98.81	100.76	100.49	99.06
Weight of a cu. ft., lbs14 Lbs. of water absorbed	4.70	132.30	107.30	146.00	153.00
per cu. ft 1 Crushed at, lbs. per sq.	7.70	15.50	14.26	6.89	5.04
inch	,495	2,808	2,155	7,000	9,050

Explanation:

- Round Rock.
- Cedar Park. E. Cluck & Br Leander. R. B. George & Co. E. Cluck & Bro.

- Near Cedar Park. J. R. King. Brushy Creek, 1½ miles N. of Round Rock.

Some of the Williamson county limestones show much higher crushing strengths than any of the preceding. Thus, a sample from a heavy exposure about one and one-half miles east of Round Rock, on Lake Brushy Creek, and some 300 yards from the main line of the I. & G. N. Ry. crushed at 11,550 pounds

per square inch; another sample from Lake Brushy Creek, about 200 yards above the I. & G. N. Ry. bridge, crushed at 13,725 pounds per square inch; a sample from about one and one-fourth miles south of Round Rock, near the I. & G. N. Ry. and the McNeill wagon road, crushed at 15,050 pounds per square inch, and a sample from the George Johns ranch, about three miles southwest of Round Rock and near the I. & G. N. Ry. main line, crushed at 17,050 pounds per square inch.

Excellent white lime is made at Round Rock by the Round Rock White Lime Company, and a crusher is also operated.

The composition of the Hydrated Premium white lime made at Round Rock by the Round Rock White Lime Company is as follows (analysis by the Underwriters' Laboratory, Chicago):

	Per	cent.
Insoluble siliceous matter		0.73
Oxides of iron and aluminum		0.64
Lime (hydrated)		99.30
Magnesia		Trace
Sulphuric acid		Trace
Undetermined		0.13
• · · · · · · · · · · · · · · · · · · ·	_	
	1	00.00

This corresponds very closely with an analysis made December 15, 1903, in the laboratory of the University Mineral Survey by O. H. Palm, which was as follows:

		Per	cent.
Insoluble siliceous matter	٠.		0.40
Alumina		1,4	Trace
Oxide of iron			Trace
Lime (hydrated)			99,05
Magnesia			0,21
Sulphuric acid			Trace
		_	99,66

Williamson county also has good dolomites, suitable for use in iron furnaces making pig iron for basic steel. The following analysis shows the quality of this stone, from D. MacRae, Cedar Park:

		cent.
Silica		 0.62
Alumina		
Oxide of iron		 Trace
Lime	٠.	 33.00

																P	er	ce	nt.	
Magnesia Carbonie	acid		•				•				•	•	•		• •	•	•	18 46	56 66	
																	_	99	58	

A similar stone occurs on the property of J. R. King, in the same vicinity.

The discovery of a high grade oil a few miles south of Thrall has attracted much attention of late (1915). This field is unique among the oil fields of the United States in that the oil-sand is an altered igneous rock akin to serpentine. The depth below the surface, at which this material is found, varies from 820 feet, or thereabout, to 900 feet. The maximum thickness is at present unknown but is certainly more than 100 feet, in places. This altered igneous rock is in the Taylor Marls (Upper Cretaceous) above the Austin chalk. It does not appear probable that it was the original repository of the oil. It has afforded to the oil (and gas) a more or less spongy bed, suitable for the entrance and for the retaining of oil and gas.

A notable feature of this material is the occurrence of a comparatively large amount of black, magnetic iron sand.

In the Matanzas province, Cuba, a heavy asphaltic oil has been noticed in conjunction with serpentine, but so far as is now known the Thrall field is the only one in which any considerable quantity of a high grade oil has been found in an altered igneous rock.

The discovery of this fact is due to Dr. J A. Udden, geologist for this Bureau, and he published an article on the subject in the Oil and Gas Journal, Tulsa, Oklahoma, April 22, 1915, p. 27.

WILSON COUNTY.

Location—South Texas.

County seat — Floresville; population, 1,398; elev. 389; lat. 29° 7'; long. 98° 10'; mag. dec. 9° 3' (1912).

Area, square miles, 784.

Population, 17,066.

Railroads, 2.

Miles of railroad, 54.16.

Assessed valuation of property of all kinds, \$10,254,470.

Mineral resources—Clays; lignite; mineral waters; gravel.

Wilson is one of the most important clay-working counties in the State. The pottery clays of the county are represented by an analysis of a sample from Lavernia, as follows:

]	P	eı	cent.
Silica		 ٠.												68.84
Alumina		 									•			21.15
Oxide of iron		 												1.15
Lime														Trace
Magnesia														Trace
Soda														1.12
Potash														0.45
Titanic acid						,								1.22
Water									٠				•	6.62
													-	100 55
														100.55
Total fluxes														2.72

This clay became viscous at a temperature of 3,038 degrees F.

The buff-burning semi-refractory clays are represented by an analysis of a sample from Calaveras, as follows:

	1	Per cent.
Silica	·	70.50
Alumina		
Oxide of iron		
Lime		
Magnesia		
Soda		0.20
Potash		Trace
Titanic acid		1.20
Water		
		98.40
Total fluxes		2.90

This clay became viscous at a temperature of 2,498 degrees F.

The calcareous brick clays are represented by an analysis of a sample from Calaveras, as follows:

]	P	er	cent.
Silica															·												37.45
Alumina .										_				_				_		_							7.72
Oxide of i																											
Lime	, viii	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	27 0 2
Time	· · ·	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	•	•	•	٠	•	•	• .	0.00
Magnesia	٠.	•	•	•	•	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	W. 30

													I	Рe	ľ	cent.
Water Carbonic																
														-		99.67
Total flux	xes .	 	_	 _	_		_			_	_	_	_			30.30

This clay slagged at a temperature of 2,390 degrees F.

The quality of the brick made is shown by the following tests on a sample several years old:

Weight per cubic foot, lbs	92.87
Per cent. of cells by volume	50.26
Volume of cells in 100 parts by weight	36.20
Pounds of water absorbed per cubic foot	33.61
Crushed at, pounds per square inch	2,144

Lignite occurs in the vicinity of Sutherland Springs, but it has not been developed.

WINKLER COUNTY.

Location—West Texas; southeast of New Mexico.

County seat—Kermit; population,

Area, square miles, 888.

Population, 442.

Railroads, 1.

Miles of railroad, 10.

Assessed valuation of property of all kinds, \$1,085,473.

Mineral resources-Salt, from old salt lakes, basins, etc.

WISE COUNTY.

Location—North Texas.

County seat — Decatur; population, 1,651; elev. 1,058; lat. 33° 15′; long. 97° 33′; mag. dec. 9° 29′ (1910).

Area, square miles, 843.

Population, 26,450.

Railroads, 2.

Miles of railroad, 96.47.

Assessed valuation of property of all kinds, \$14,010,450.

Mineral resources-Clays; coal; limestone; sandstone; gravel.

The red- and brown-burning clays are represented by an analysis of a sample from near Bridgeport, as follows:

Per	cent.
Silica	56.01
Alumina	
Oxide of iron	
Lime	Trace
Magnesia	1.11
Soda	1.44
Potash	1.19
Titanic acid	1.65
Organic matter	4.04
Water	7.30
-	
	99.40
Total fluxes	6.33

The clays of easy fusibility are represented by an analysis of a sample from Bridgeport, as follows:

					F	er	cent.
Silica	 	 	 		 		59.20
Alumina							20.60
Oxide of iron	 	 	 	 	 		6.90
Lime							1.08
Magnesia							1.62
Soda							1.84
Potash							1.60
Titanic acid	 	 	 		 		1.50
Organic matter	 	 	 		 		0.20
Water							4.66
							99.20
Matal fluxas							12 04

This clay became steel hard at a temperature of 1,992 degrees F.

The quality of the brick made is shown by the following tests on samples from the Wise County Brick Company, Bridgeport:

Dry press.	Stiff mud.	Perforated.
Weight per cu. ft., lbs	115.10	106.80
Per cent. of cells by volume 15.09	18.21	16.62
Vol. of cells in 100 parts of weight 7.21	9.87	9.73
Lbs. water absorbed per cu. ft 9.42	11.36	10.39
Crushed at, lbs. per square inch 6,998	2,800	2,642

Wise county has been an important coal-producing county for some years. The composition of the coal is shown by the following average of 6 analyses:

Pe	er cent.
Moisture	9.81
Volatile combustible matter	33.06

Fixed	carb	ón	 	_										_	_	F	'er	' ce	nt.	
Ash .		• • •		:	•	•	 •	•	•		•		•	•			•	12	.47	
																	-	100	.00	,
Sulphu B. t. u	ır l. per	 lb.	 			•		•		• •	٠					•	• •	2 10.3	.03	

Some of the best limestones in the State are found in this county. From a number of analyses and tests we select the following as typical:

(
	1	2	3	4	. 5	6
Silica	1.21	1.60	1.76	5.20	1.32	2.20
Alumina	5.45	Trace	1.03	1.02	1.06	0.50
Oxide of iron	1.47	2.49	0.57	Trace	Trace	1.10
Lime	47.75	53.14	50.60	51.78	55.50	53.70
Carbonic acid	36.05	40.76	39.75	41.50	41.14	41.80
Loss on ignition	6.96	2.04	5.65		• • • • •	
	99.06	100.03	99.36	99.50	99.02	99.30
Weight per cu. ft., lbs Lbs. water absorbed	168.00	166.40	168.60	170.30	169.70	170.00
per cu. ft	0.36	0.73	0.10	• • • • •	* *	
inch		4,125	4,240	13,644	16,933	14,000

Explanation:

Nos. 1, 2 and 3. Chico Crushed Stone Co., Chico. Nos. 4, 5 and 6. Bridgeport Coal Co., Bridgeport.

A sample of limestone from Alvord quarry, near Alvord, gave the following results:

	Per	cent.
Silica		$\cdot 1.50$
Alumina		0.36
Oxide of iron		0.44
Lime		52.87
Magnesia		None
Carbonic acid		41.23
Loss on ignition		2.17
Sulphuric acid		0.55
	_	99.12
Weight per cubic foot, pounds		
Pounds of water absorbed per cu. ft	• • • .	0.31
Crushed at, pounds per square inch	1	1,425

WOOD COUNTY.

Location—Northeast Texas.

County seat — Quitman; population, 475; elev. 590; lat. 32° 46'; long. 95° 26'; mag. dec. 8° 9' (1912).

Area, square miles, 688.

Population, 23,417

Railroads, 5.

Miles of railroad, 69.72.

Assessed valuation of property of all kinds, \$8,720,246.

Mineral resources—Clays; iron ore; lignite; petroleum; glass-sand; gravel.

The pottery clays are represented by the average of two samples from near Cornersville, and two samples from Winsboro as follows:

	Per cen	t.
	Cornersville.	Winsboro
Silica	71.78	67.65
Alumina	16.75	20.50
Oxide of iron		1.20
Lime		Trace
Magnesia		0.25
Soda	0.86	0.50
Potash	0.19	1.05
Titanic acid	$\dots 1.15$	1.30
Water	5.90	6.60
	99.23	99.05
Total fluxes	3.66	3.00

The Cornersville clays burn steel hard at about 2,200 degrees F. and become viscous at temperatures ranging from 2,570 to 3,146 degrees F. The Winsboro clays become steel hard at a temperature of about 2,000 degrees F.

The iron ore beds in Wood county are east of Mineola and north of the Texas & Pacific Railway. They have not been developed or even prospected. Nothing definite is known concerning their extent or quality, but surface specimens indicate a limonite of fairly good character. It is probable that many of the deposits of iron-gravel would make excellent roads, especially the material found along the road from Mineola to Hainesville and west of Mineola on the west side of the Sabine river. In many of the east and northeast counties there are very large deposits of such gravel, containing not enough iron to render them useful as iron ores, but constituting an excellent road material, easily obtained and convenient to some of the principal roads. One of the few localities in Texas where oil can be seen cozing from the ground is southeast of Mineola on the Macklin farm, and south of

Hainesville, at Seed Tick Spring. It is not unreasonable to think that in this part of the county some producing wells may be brought in, although it must be said that surface indications are not to be depended on with certainty.

Wood county has long been known as one of the most important producers of lignite. The largest lignite mine in the United States, that of the Consumers Lignite Company, is at Hoyt, near Alba, while the Alba-Malakoff Company, at Alba, adds to the already large production of the county. Very nearly one-half of the entire lignite output in the State is from this county.

The composition of the lignite is given by the following average of 20 analyses:

Moisture	Pe	r cent.
Moisture		27.05
Volatile combustible matter		
Fixed carbon		29.25
Ash		
	•	100.00
Sulphur		
B. t. u		7,469

The composition of the water from the 1,400-foot well at Mineola is as follows:

·	Frains per
U.	S. Gallon.
Silica	. 2.00
Iron	. None
Aluminum	
Calcium	
Magnesium	. 0.70
Sodium	. 30.70
Potassium	2.50
Carbonate radicle (CO ₃)	. 2.40
Bicarbonate radicle (HCO ₃)	. 36.80
Sulphate radicle (SO ₄)	. 0.70
Nitrate radicle (NO ₃)	
Chloride	
	100.50

Analysis said to be by United States Geological Survey.

YOAKUM COUNTY.

Location—West Texas; borders on New Mexico. County seat—Plains; population, 125; elev. 3,300. Area, square miles, 840.

Population, 602.

Railroads, none.

Assessed valuation of property of all kinds, \$1,412,232.

Mineral resources—Unknown.

YOUNG COUNTY.

Location-Northwest of center.

County seat—Graham; population, 1,569; elev. 1,045; lat. 33° 4′; long. 98° 35′; mag. dec. 9° 20′.

Area, square miles, 821.

Population, 13,657.

Railroads, 3.

Miles of railroad, 53.01.

Assessed valuation of property of all kinds, \$8,179,578.

Mineral resources—Clays; coal; limestone; sandstone; possibly natural gas and petroleum; gravel.

The vitrifiable brick clays are represented by an average of two analyses of samples taken from 14 to 16 miles west of Graham, as follows:

	r cent.
Silica	
Alumina	20.95
Oxide of iron	5.30
Lime	0.05
Magnesia	0.25
Soda	1.40
Potash	1.85
Titanic acid	0.80
Water	6.30
Water, hygroscopic	2.70
en e	100.50
m-1-1 61	00=

These clays become steel hard at temperatures varying from 1,900 to 2,000 degrees F. They would probably make good material for the manufacture of paving brick.

Young county has been a producer of coal for some years. The composition of the coal from this county is given in the following average of two analyses:

	Per	cent.
Moisture		9.00
Volatile combustible matter		35.79

carbor							 •	•	16.13
	. '								00.00
ır									$\frac{2.88}{9.601}$

There are opportunities for petroleum and natural gas, but no producing wells have been brought in.

ZAPATA COUNTY.

Location—Extreme southern part; borders on the Rio Grande. County seat—Zapata; population, 250.

Area, square miles, 1,269.

Population, 3,809.

Railroads, none.

Assessed valuation of property of all kinds, \$1,156,818.

Mineral resources—Clays, and possibly coal, petroleum and natural gas. A sample of natural gas from this county gave 887 B. t. u. per cubic foot, an excellent result.

ZAVALLA COUNTY.

Location—Southwest Texas.

County seat—Batesville; population, 80; elev. 700.

Area, square miles, 1,328.

Population, 1,889.

Railroads, 1.

Miles of railroad, 35.28.

Assessed valuation of property of all kinds, \$5,427,805.

Mineral resources-Clays; coal; lignite.

The mineral resources have not been investigated.

CHAPTER VI.

THE MINING LAW.

SCHOOL LANDS—RELATING TO PROSPECTING AND DEVELOPING MINERALS THEREON.

S. B. No. 128.]

Thirty-third Legislature, 1913.

An Act relating to prospecting and developing minerals on land owned by the State of Texas, by the public free school fund and University and Asylum funds, and upon such land as the State has heretofore sold or may hereafter sell with reservation of the mineral therein and upon such land as may have been purchased with the waiver of mineral rights; and also the prospecting and development of minerals in fresh water lakes and in islands, bays, marshes, reefs and salt water lakes; relating to the disposition of the minerals and mineral rights therein; authorizing the lease of such lands and the mineral rights therein; providing royalties and other compensation to be paid to the State therefor; appropriating to certain funds the proceeds arising from such development; authorizing the adoption of rules and regulations to carry out the provisions of this Act; providing penalties for violations of the provisions of this Act; prescribing terms upon which, and the method by which, access to mineral deposits may be acquired by condemnation or otherwise; repealing Chapter 1, Title 93, of the Revised Civil Statutes adopted in 1911, and declaring an emergency.

Be it enacted by the Legislature of the State of Texas:

Section 1. All public school, University, Asylum and the other public lands, fresh water lakes, islands, bays, marshes, reefs, and salt water lakes, belonging to the State of Texas, and all lands which may hereafter be so owned, and all lands which have been heretofore sold or disposed of by the State of Texas, with a reservation of minerals or mineral rights therein, as well as all lands which may hereafter be sold with reservation of minerals or mineral rights therein, and lands purchased with relinquipment of the minerals therein, shall be included within the provisions of this Act and shall be open to mineral prospecting, mineral development and the lease of mineral rights therein in the manner herein provided. Only citizens of the United States and such other persons as have heretofore declared, or shall hereafter declare, their intention of becoming such shall be entitled to acquire any rights under this Act. It is declared to be the

policy of the State to open all such lands to mineral prospecting and development on a system providing for the payment into the State Treasury to the credit of the permanent free school, University, Asylum or other funds, of certain rents and royalties upon the gross output of any minerals or mineral product thereon.

Any person or association of persons, corporate or otherwise, desiring to obtain the right to prospect for and develop petroleum oil or natural gas that may be in any of the surveyed public free school land, University or Asylum or other public lands of the State, which may be unsold at the time such desire is made known as herein provided, or in any of said land which has heretofore been sold with the reservation of minerals therein to the public free school fund or other fund, and such of said land as has heretofore been purchased with the relinquishment of the minerals therein by the purchaser, or in any of said land that may hereafter be sold with the reservation of minerals therein, also in any of the fresh water lakes owned by the State or public free school fund or other fund, and also in any of the islands, bays, marshes, reefs and salt water lakes, may do so under the regulations terms and conditions of this Act, together with such rules and regulations as may be adopted relative thereto and necessary for the execution of the purpose of this Act by the Commissioner of the General Land Office.

One desiring to obtain the right to prospect for and develop petroleum oil or natural gas that may be in any of the surveyed lands mentioned herein shall first file with the clerk of the court of the county in which the area desired, or a portion thereof, is situated, or with the clerk of the county to which said county may be attached for judicial purposes, a separate application in writing for each tract applied for, designating the land in which he desires to acquire the aforesaid rights. No individual or corporation shall be awarded exceeding 1,280 acres of the public lands of the State for oil or gas development purposes, and no individual or corporation shall be awarded exceeding 200 acres for oil and gas development purposes within ten miles of any producing oil or gas well. The said 1,280 acres in undeveloped territory, or the 200 acres within ten miles of any producing oil or gas well, may be in as many different tracts of land of fresh water lakes as the applicant may desire; provided, the applicant correctly describes the land or fresh water lakes desired for development purposes. The lines of all tracts less than a whole survey shall conform to the exterior of the lines of the survey of which it may be a part, as nearly practicable. The said clerk shall file and record the application or applications aforesaid and note the same on his register opposite the entry of the proper survey if surveyed, or in his record book if unsurveyed, giving the time of filing, and the applicant shall file such application in the General Land Office, together with one dollar as filing fees, within thirty days after the date it was filed by the county clerk.

- One desiring to obtain the right to prospect for and develop petroleum oil or natural gas in any of the State's islands, salt water lakes, bays, marshes, reefs and fresh water lakes owned by the State, or in any of the unsurveyed public land, shall first file a separate written application for each tract applied for with the county surveyor of the county in which the area or a part of same may be situated, or the county to which said county may be attached for surveying purposes, giving a designation of the same sufficient to identify it. The surveyor shall immediately file and record same, giving time of such filing, and within ninety days thereafter he shall survey and deliver to the applicant the field notes and original application. Said papers, together with one dollar as filing fee, shall be filed in the General Land Office, within one hundred days after the application was filed with the county surveyor, and not thereafter. Locations and surveys under this section shall not exceed 1.280 acres in undeveloped territory, and not exceeding 200 acres within ten miles of a producing gas or oil well. All locations and surveys under this section shall, if practicable, be of regular form, but in every case the line or lines adjacent to other surveys shall conform to the lines of such adjacent surveys. If there are no adjacent surveys the surveyor shall connect such survey with some established survey on the main land.
- SEC. 5. When the Commissioner receives an application or application and field notes, as provided for in the two preceding sections, within the time required, together with the filing fee of one dollar, he shall file same, and if, upon examination, said papers are found to be correct, and in compliance with this Act, and if the status of the area applied for is within the provisions herein, the applicant shall be entitled to the right to prospect for and develop the petroleum oil or natural gas that may be under the surface embraced in the application and field notes, and as evidence of such right the Commissioner shall issue to each applicant a permit after the applicant shall have complied with the conditions hereinafter imposed.
- SEC. 6. Before the issuance of the permit provided for in the preceding section the applicant shall pay to the Commissioner of the General Land Office ten cents per acre for each acre embraced in the application and field notes. Thereupon a permit shall be issued to the applicant, conferring upon him an exclusive right to prospect for and develop petroleum oil or natural gas within the designated area for a term not to exceed two years. Within thirty days after the expiration of the first year the owner of the permit shall pay another ten cents per acre, as in

the first instance. Upon the termination of the period for which the original permit was granted, and the receipt of satisfactory evidence of the compliance with the conditions prescribed in Section 7 of this Act, and such compliance shall not have led to the discovery of petroleum oil or natural gas in commercial quantities, then the Commissioner may grant an extension of the permit for a term not to exceed one year upon the payment by the applicant or his successors in interest of an additional fee of twenty-five cents per acre. No extension, however, shall be granted unless satisfactory proof of an effort towards the development of the area included in the permit has been made in good faith and the expenditure of the sum required and duly submitted as set forth in Section 7 of this Act.

Before the expiration of six months after the date of the permit the owner of said permit shall in good faith commence actual work necessary to the physical development of said area, and if petroleum oil or natural gas is not developed the owner or manager shall, on or before the thirty days after the expiration of twelve months from the date of the permit, file in the General Land Office a sworn statement supported by two disinterested, credible witnesses, that such actual work was begun within the six months aforesaid, and that petroleum oil or natural gas has not been discovered in commercial quantities and that a bona fide effort to develop said area was made during the six months preceding the filing of said statement during the two years covered by said permit, the owner thereof shall expend not less than four thousand dollars in a bona fide effort for the development of such area, unless such area has sooner been developed or abandoned. The owner or manager shall, within thirty days after the expiration of the two years from the date of the permit, file with the Commissioner of the General Land Office a sworn statement, supported by two disinterested, credible witnesses, that such bona fide effort for the development of the area has been made, stating in what condition, and showing the expenditure thereof. A failure to file either of the sworn statements herein provided for and within the time specified, or the filing of a statement untrue or false in material matters, or the failure to expend the sum named in a bona fide effort toward the development of the area or areas, shall work a revocation of said permit and the termination of the rights of the owner. Such termination shall be endorsed by the Commissioner of the General Land Office, upon a duplicate copy of the permit retained in the General Land Office. Upon the termination of such permit the area shall again be subject to location by another than the forfeiting owner. The expenditure herein required for development purposes may be made upon one or more contiguous tracts embraced in a permit, and shall be sufficient for the en-

tire area embraced in one such permit. The amount herein required to be expended in development purposes shall be required on each and every non-contiguous area. A separate permit shall be issued for each non-contiguous area, but may contain an entire contiguous area of two or more adjacent tracts of land. An application may embrace contiguous portions of different tracts or surveys. An assignment by deed or other form of transfer, and also a lien of any form may be executed upon any claim to any person, association of persons, corporate or otherwise, that may be qualified to obtain a permit or lease in the first instance: provided, that deed or other evidence of sale, assignment or lien shall be recorded in the county where the property or a part thereof is situated, and shall be filed in the Land Office within sixty days after the date thereof, accompanied by a filing fee of one dollar. If such instrument shall not be filed in the Land Office within the time required, such deed or evidence of transfer or evidence of lien shall not have the effect to convey the property, nor shall the obligations incurred therein be 'enforceable.

Sec. 8. If at any time within the life of the permit one should develop petroleum oil or natural gas in commercial quantities, the owner or manager shall file in the Land Office a statement of such development within thirty days thereafter, and thereupon the owner of the permit shall have the right to lease all or part of the area included in the permit, upon the following conditions:

(1). An application and a first payment of \$2.00 per acre for a lease of the area included in a permit shall be made to the Commissioner of the General Land Office within thirty days after the discovery of petroleum oil or natural gas in commercial quan-

tities.

(2). A lease may be granted for a period of ten years, or such portion thereof as the applicant may desire, and with the option of renewal or renewals for an equal or a shorter period upon the payment of a cash sum of \$2.00 per acre in advance on the entire area included in any lease and an equal sum annually in advance thereafter during the life of such lease, and in addition thereto the owner of such lease shall pay a sum of money equal to a royalty of one-eighth of the value of the gross production of petroleum oil.

(3). The owner of a permit shall not take, carry away or sell any petroleum oil or natural gas found in any area before such owner shall have obtained a lease therefor; provided, such owner may use for fuel such portion of said substances as may be necessary for the continued development of the area without accounting therefor. In addition to the \$2.00 per acre annually in advance, the owner of a gas well shall pay a sum of money equal to 10 per cent. of the meter output of all gas sold. The

said royalty on petroleum oil, or natural gas, shall be paid to the Commissioner of the General Land Office monthly during the life of the lease. In all such payments the owner or manager shall accompany the remittance with a sworn statement of the amount produced, and the market price of the output, and a copy of any pipe or pipe lines or tank receipts, check or memoranda of amount put out or into such lines or tanks. The books and accounts and the receipts and discharges of all lines, pipe lines or tanks and gas lines and gas pipes, and all other matters pertaining to the production, transportation and marketing of the output shall be open to the examination and inspection at all times by the Commissioner of the General Land Office or his representative or any other representative of the State. The value of any unpaid royalty or royalties and any sum or sums due to the State upon any lease contract shall become a prior lien upon all production of petroleum oil or natural gas produced upon the leased areas to secure the payment of any royalties and sums due the State.

In the event any land or water included within the SEC. 9. operation of this Act has heretofore been or may hereafter be sold by the State with the reservation of minerals therein, or has been purchased by one with the waiver of mineral rights, such land shall be subject to prospect and lease as set forth in this Act, but the owner of the permit or lease shall pay to the owner of the surface of the land twenty cents per acre per annum in advance during the life of the permit or lease, and the first payment shall be paid to the Commissioner of the General Land Office for the use of the owner of the surface, prior to the issuance of such permit, and said sum so paid to the owner of the surface rights shall be in full compensation for all damages to such surface by reason of the ingress and egress and operation necessary to development and the operation under the permit or lease; provided. that if the owner or lessee of the surface will not accept the payment of twenty cents per acre per annum, as above provided, and the lessee of the mineral rights cannot agree with such owner or lessee of the surface rights on the compensation to be paid for the use of the damages to such surface rights, then the right thereto and the ingress and egress from such mine or mining claim may be acquired by condemnation as hereinafter provided.

Sec. 10. No person, association of persons, corporate or otherwise, shall hold or own at one time, by permit or lease, direct or through assignment, nor hold or own a controlling interest in more than two sections of 640 acres each, more or less, of surveyed school land, University, Asylum or other public land, nor more than 1,280 acres of islands, lakes, bays, marshes, reefs, or unsurveyed school, University or Asylum or other public land

in any undeveloped field, nor more than two hundred acres within ten miles of any producing oil or gas well.

A person or association of persons, corporate or otherwise, applying for a permit or lease, shall file with the application a sworn statement showing what interest, if any, the applicant or each of the members of the association or each stockholder in the corporation may hold in any other permit or lease issued by the State. When the Commissioner is satisfied that the applicant is entitled to such permit or lease he shall issue the permit for a term not to exceed two years, and the lease may be issued for such time as the applicant may elect, not to exceed ten years, with the right of a renewal or renewals upon such terms and conditions as hereinbefore provided. The permit or lease shall contain the terms upon which it is issued, and such other matters as the Commissioner may deem important to the rights of the State or applicant. Should a permit or lease be issued upon a statement by the applicant or applicants, or either of them, which is false or untrue in any material fact, the Commissioner may cancel such permit or lease when sufficiently informed as to such false or untrue statements.

Should the owner of a permit fail or refuse to proceed with reasonable diligence in a bona fide effort to develop an area included in such permit, the Commissioner of the General Land Office may cancel same. Should the holder of a lease fail or refuse to proceed with reasonable diligence and in a bona fide effort to develop, operate and put out the product of a producing well of petroleum oil or natural gas at any time during the life of a lease, the Commissioner of the General Land Office may cancel such lease contract. In the event of a cancellation of a permit or lease contract for the causes mentioned in this section, the area included therein shall be subject to the application of another than the forfeiting owner, in the same manner as in the first instance; provided, should a lease covering a producing well be canceled an application for a lease of such area or part thereof may be made direct to said Commissioner, and a copy of such lease shall be filed in the office of the County Clerk.

SEC. 13. Coal and Lignite.—All coal and lignite underlying the surface of the lands and waters, as defined by this Act, shall be subject to prospect and development under the following terms and conditions:

Any person, firm or corporation desiring to prospect for coal and lignite shall file with the clerk of the county in which the land is situated his application covering not more than 2,560 acres. Said application shall be made in the same manner and form as is required by other sections of this Act, and permits shall be granted by the Commissioner of the General Land Office authorizing such prospect and development upon the following terms

and conditions, subject to forfeiture for breach of any of said terms and conditions: said permit shall run for a period of twenty years with preference right of renewal to lessee for three months after the expiration thereof. Lessee shall, within sixty days after the granting of said permit, begin to prospect for coal and lignite, and shall, within ten months thereafter, sink a shaft 6x8 feet to coal or lignite, drive a tunnel in said coal or lignite, to a distance of twenty yards, and shall crib said shaft and prop said tunnel in strict conformity with specifications to be furnished by mine inspector of this State, and shall, within sixty days thereafter, begin to mine said coal or lignite, and shall continuously mine the same, provided same be situated within two miles of any railroad; but, if said coal or lignite be situated more than two miles from any railroad, then said lessee shall be allowed five years within which to begin to mine said coal and lignite; provided, that in the last named contingency the said five years shall not be reckoned as any part of the time covered by said lease. The royalty to be paid to the State shall not be less than six cents per ton for coal and not less than four cents per ton for lignite, for each and every ton of two thousand pounds of said product sold. Said royalties shall be due and payable to the State monthly, and the same shall be accompanied by a sworn statement of the lessee showing the number of tons so mined as well as the number of tons sold; provided, further, that the royalties herein provided shall, after the third year of operation of said mine, equal a minimum of \$4.00 per acre for each and every acre covered by said lease. Said mine shall be kept in continuous operation, barring strikes, lockouts, fires, floods and other accidents over which the lessee has no control: provided. further, that said lessee shall not be required to operate said mine at a time when the market price for said product is such as to cause same to be run at a loss to the lessee.

- Sec. 14. Other Minerals.—All other minerals and mineral rights that may be in the lands or waters included in Section 1 of this Act, shall be subject to prospect and development under the terms and conditions hereinafter stated.
- SEC. 15. A mining claim upon deposits, veins or lodes of quartz or any other rocks, bearing silver, gold, einnabar, lead, tin, iron, copper or any other metallic substance, may equal but shall not exceed 1,500 feet in length and 600 feet in width; such claim may be of unlimited depth, but shall be bounded by four vertical planes. All claims shall be in the form of a parallelogram unless such form is prevented by adjoining rights, and the locator shall be entitled to the use of all superficial area bounded by the enclosed lines of the claim and to all minerals therein upon the terms hereinafter provided. In all conflicts priority of location shall decide.

SEC. 16. The locator of any mining claim shall post up at the center of one of the end lines of the claim a written notice stating the name of the location and of the claim and date of posting, and shall describe the claim by giving the number of feet in length and width and direction the claim lies in length from the notice, together with the section number, if known, and the county, and shall place stone or concrete markers at the four corners not less than three feet high and otherwise describe the corners so that they can be readily found. The notice shall be posted in a conspicuous place so that it can be easily seen.

Sec. 17. The locator shall, within three months after the date of posting the required notices, file with the country clerk of the county in which the land, or a part of the same, is situated, a copy of the notice provided for in Section 16 hereof, together with a recording fee of one dollar (\$1), and an affidavit that the locator has performed ten feet of work in the shape of tunnels, shaft or open cut on the claim, and within one year from the date of the posting of the original notice the locator shall file with the county surveyor of the county in which the land or a part thereof is situated, an application in writing for the survey of the claim, giving the name of the claim and such description of its boundary and location as will enable the surveyor to identify the land. The affidavit shall be accompanied by a fee of twenty dollars (\$20) unless its tender is waived, and also with an affidavit stating the kind of the claim; also the date of the first posting of the notice on the claim by the applicant, and that the notice has not been post dated or its date changed. Upon receiving the application and affidavit and fee, the surveyor shall file the application and affidavit, and shall forthwith proceed to survey the claim. After the field notes are recorded and a plot of the survey is made by the surveyor, which shall be within ninety days, he shall deliver the application and the affidavit, together with the field notes and plat, to the applicant or his agent, who shall forward the same within sixty days to the Commissioner of the General Land Office, together with one dollar (\$1.00) as a filing fee. The fee of twenty dollars (\$20) shall cover all charges by the surveyor in connection with any one claim.

SEC. 18. In any mining claim of any character shall be filed upon jointly by two or more claimants, and any one or more of them shall fail to contribute his proportion of any expenses required in this Act within the necessary time the co-owner or co-owners who have paid the fees or other expenditures required by this Act may, at the expiration of the time in which the payment is required to be made, and after the same has been made, give notice in writing to such defaulting co-owner, or if such defaulting co-owner cannot be found, then by publication in a newspaper published in the county where the claim is situated, or if no such

newspaper be published in such county, then in the newspaper published nearest thereto, at least once a week for four successive weeks. If, after such publication notice, such delinquent shall fail or refuse to contribute his proportion of the expenditures required, his interests in the claim shall cease and shall be forfeited to the co-owner or co-owners who have made the required expenditures. An affidavit of such co-owner or co-owners of the claim, accompanied with notices given, shall, when recorded in the office of the county clerk, be sufficient evidence of such delinquency and forfeiture.

Sec. 19. Claims usualy called placers, including all forms of metallic deposits, excepting those described in Section 15, as well as any mining claim covering deposits of kaolin, baryta, salt, marble, fire clay, gypsum, nitrates, mineral paints, asbestos, marl, natural cement, clay, onyx, mica, precious stones or any other non-metallic minerals and stones valuable for ornamental or building material, shall be subject to location and entry and lease on the same terms and conditions and upon similar proceedings as are provided herein for vein or lode claims; provided, all placer claims located shall conform as nearly as practicable to existing surveys and their sub-divisions, and no placer claim shall include more than forty acres, and no aggregation of individual claims shall exceed three hundred and twenty acres. After the location of any mining claim and survey thereof and the registration thereof in the office of the General Land Commissioner, as hereinbefore provided, the locator shall be entitled to the exclusive uses and possession thereof so long as the locator shall continue to do the amount of work upon such claims equivalent to one hundred dollars (\$100) worth of labor per annum: provided, that an affidavit shall be filed before the expiration of each and every year, setting forth in detail the development work that has been done that year, with an itemized statement of the value thereof. Such statement shall be filed in the office of the Commissioner of the General Land Office, also in the office of the county clerk of the county where such mining claim is located, or the county to which such county is attached for judicial purposes. Commissioner of the General Land Office may, at his discretion, require additional proof that such development work has been done.

Sec. 20. In full payment to the State for the right to take from any mining claim of any character described in Sections 15 and 19, any mineral wealth or deposit whatever, whether metallic or non-metallic, the owner or holder of such claim shall pay unto the State a royalty or rental equivalent to five per centum of the total gross output sold or disposed of from such mine or mining claim of any character therein defined. If any locator shall fail to post the location notice or to file with the county clerk the

location notice and affidavit, or shall fail to file with the county surveyor the application for survey and affidavit hereinbefore required, or shall fail to file with the Commissioner of the General Land Office the application, affidavit, file notice and plat hereinbefore required; or shall fail to comply with any of the terms or conditions herein required, such claim shall be subject to forefeiture by the Commissioner of the General Land Office by an endorsement upon such application theretofore filed of the word "forfeited," signed officially by him, and thereupon all rights in such mining claim and rights of the locator or claimant in such mining claim shall utterly cease and determine, and the same shall be subject to relocation; provided, that the Commissioner of the General Land Office may, upon satisfactory showing to him why such conditions or requirements were not complied with, reinstate such claim upon the written request of one or more of the locators, claimants or owners, filed in his office; provided, further, that no rights of any others have intervened at the date of filing of such request in the General Land Office. One interested in the claim at the date it was forfeited shall not be eligible to relocate or file upon the same land or in behalf of any other person within a period of six months next ensuing after such forfeiture, and any attempt to make such location by such person shall be wholly void.

Sec. 21. Any locator, claimant or owner of any mining claim under this Act is authorized to fell and remove for building and mining purposes any timber or any trees growing or being upon any unoccupied public lands under such rules and regulations as the Commissioner of the General Land Office may, from time to time, provide for the protection of timber and other growth upon such lands and such other purposes.

Sec. 22. Nothing in this Act contained shall ever be construed to destroy, invalidate or impair any valid claim, right or interest existing in, to or concerning any lands whatsoever at the date of the passage of this Act, or of any pre-emptor, purchaser, claimant, settler, locator or any other person whatsoever.

Sec. 23. The locator or owner of a mining claim shall have the right to occupy within the limits of his claim so much of the surface ground as is strictly necessary for the use and exploitation of the mineral deposits and for the buildings and works necessary for mining operations and for the treating and smelting of the ore produced on such claims and to occupy within and without the limits of his claim the necessary land for right of way, for ingress and egress to and from his claim, for roadways, or railways; provided, that if the locator or owner of the mineral right cannot agree with the owner or lessee of the surface right in regard to the acquiring of same and in regard to the compensation for the injury incident to the opening and the working

of such mine and the access thereto, he may apply to the judge of the county court of the county in which such mining claim is located, by filing a written petition setting forth with a sufficient description the property and surface right sought to be taken and the purpose for which the same is to be taken, and it shall be the duty of such county judge of such county to appoint three disinterested freeholders to examine, pass upon and determine the damages and compensation to be paid to the owner of such surface right or other property necessary to be taken, and the proceedings for acquiring or condemning such surface right or other property shall, at all times, so far as possible, be covered by the laws relating to the condemnation of rights of way for railway companies, the locator or owner of such mining claim occupying the position of the railway company, and an appeal may be taken from the decision of the commissioners upon the same terms and conditions and subject to the same regulations and qualifications prescribed by law for the condemnation of right of way for railways.

SEC. 24. Upon all lands of any character heretofore sold or leased by the State in which the minerals or mineral rights were reserved to the State, the public free school fund University fund, Asylum or other fund, the grantee or lessee, as the case may be, shall have the prior right for six months after date upon which this Act shall take effect to prospect, locate and apply for the mineral rights upon such land heretofore sold or leased to him, and after the expiration of such six months such preference or priority right shall cease and such grantee or lessee shall have no prior or preference rights over any other prospector or locator.

SEC. 25. The holder of a permit, a lease, a prospecting right, or any other right acquired under this Act may relinquish one or more of such permits, leases, claims or prospector's claims at any time by filing a relinquishment in the General Land Office after it is duly recorded by the clerk of the proper county, but such holder shall not be entitled to a refund of any sum paid thereon.

SEC. 26. The Commissioner of the General Land Office shall collect and transmit to the State Treasurer all money derived from the development of any minerals or substance named herein and found on the public free school land or other public land, and it shall be credited to the permanent free school fund or other fund to which the land from which such money is derived is set apart. All money derived from the development of any mineral or substances named herein and found on other than public free school land, University or Asylum land, shall be credited to the game, fish and oyster fund for the use of that department. All fees shall be credited to the general revenue in

the manner provided by law for other fees paid into the General Land Office.

SEC. 27. All development in water or on islands, marshes and reefs shall be done under such regulations as will prevent the pollution of the water, and for the prevention of such pollution the Game, Fish and Oyster Commissioner may be called upon for assistance in the adoption and enforcement of rules and regulations for the protection of said waters. For a violation of such rules and regulations the Commissioner of the General Land Office may revoke a permit or cancel a lease.

Sec. 28. The rights acquired under this Act shall be subject to taxation as is other property after the owner shall have paid

to the State the sums necessary to perfect his rights.

SEC. 29. The issuance of a permit or lease or the filing of a prospector's affidavit on unsold land included within this Act shall not prevent the sale of the land without minerals on which such mineral or mining claim may be located under the laws applicable to such land, but in case of such sale after an application has been filed with the county clerk so herein provided, the purchaser of such land shall not be entitled to any part of the proceeds of such minerals or mining location, nor other compensation, nor shall such purchaser have any action for damages done to such land by or resulting from the proper working of or operation under such permit, lease or prospector's claim.

Sec. 30. The Commissioner of the General Land Office shall have general supervision of all matters necessary for the proper administration of the purpose of this Act, and he is authorized to adopt rules and regulations and to alter or amend them from time to time as may appear necessary for the protection of the interest involved and the execution of the purposes of this Act not inconsistent with its provisions and the Constitution of the

State.

Sec. 31. No individual, firm, association of persons or corporations shall be entitled to locate or lease more than five mining claims of any character defined in Section 15 and 19, and any location or lease made contrary to this section shall be void; provided, however, that upon coal or lignite mines or deposits any one individual, firm, association of persons or corporation shall be entitled to locate or lease a total area not to exceed twenty-five hundred and sixty (2560) acres.

Sec. 32. If any provision of this bill shall be held to be unconstitutional either as applied to any character of land or water described in Section 1, or in any other respect, such decision shall not be construed to invalidate the provisions of this Act with regard to any other character of land (or) waters described

in Section 1 or any other provision of this Act.

SEC. 33. Chapter 1, Title 93, of the Revised Civil Statutes of

1911, relating to mines and mining, and all other laws and parts of laws relating to the sale of mineral lands are hereby repealed.

SEC. 34. The fact that there is no adequate statute by which the mineral resources of this State can be properly developed on the public lands and the waters of the State, creates an emergency, and an imperative public necessity exists that the constitutional rule requiring bills to be read on three several days in each house should be suspended, and that this should be placed upon its third reading and final passage, and take effect from and after its passage.

Approved April 9, 1913.

CHAPTER VII.

LOCATION, ELEVATION AND POPULATION OF CITIES, TOWNS AND VILLAGES.

Under "Population" the figures are from the census of 1910, except those marked *, which are for the year 1912-1913.

The highest point in the State appears to be El Capitan Peak, Guadalupe Mountains, Culberson county, 8690 feet. The highest town is Fort Davis, Jeff Davis county, 4927 feet.

The county towns are printed in capital letters.

Place	County.	Elevation	Population
A b bott	County.	713	475
Abarrathy	.Hale	. 3,310	160
	Taylor		12.806*
Abaura	. Harrison		12,000
Abneys	Shackelford	. 1.885	
Acampo	.Hardeman	. 1,517	75
Addicks	Bexar		26
	Dallas		65
			183
Aukins	Bexar	•	100
	Orange		
	Potter		
Afton	Dickens	. 3,249	45
	Webb		30
	Floyd		• • • • • .
	Smith		
	Cass		54:
	Gray		2:50) 6:25:
	Wood		0.20
	Shackelford		9 :99;
	Angelina		
	Robertson		
	Parker		250
	Hamilton		
	Erath		381
	El Paso		
	San Saba		
	Galveston		8 01
	Jim Wells		2,136
	Harris		112
	El Paso		
	Collin		260
Allendale	Wichita	1,016	
Allenfarm	Brazos	205	67
	Matagorda		
Alley	Hale	$3,322^{\circ}$	
Alleyton	Colorado	188	$\boldsymbol{251}$
Alma	Ellis	473	158
	Harris	66	63
Aloe	Victoria	111	

Place.	County.	Elevation.	Population.
ALPINE	.Brewster	. 4,481	800
Altair	. Colorado	. 207	150
Alta Loma	.Galveston		150
	.Cherokee		$\overline{672}$
	.Hidalgo		
	.Brewster		• • • • • • • • • • • • • • • • • • • •
	·Wilson		$\overset{\dots}{25}$
Alvarado	Johnson	693	1.155
Alvin	·Brazoria	. 51	1,453
Alvord	· Wise	. 880	1,023
Amanda	Kinney	1,085	1,020
AMARILLO	Potter	. 3,676	13.585*
Ambia	Lamar		64
Ambrose	Grayson	. 529	
Amalia	Jefferson	31	$\begin{array}{c} \cdots \vdots \\ 21 \end{array}$
Amag	Liberty	. 78	21
Amherst	·Lamb		
Amico	Smith	. 375	
Anacacho	·Kinney	. 1.349	• • • • • •
	Chambers		300
	Brazoria		60
	Grimes		572
	Caldwell		
	Cherokee		• • • • • • •
	· Uvalde		• • • • •
	Angelina		34
	Brazoria		898
	Navarro		29
	.Collin		402
Annarene	.Archer	. 1,171	
Anneta	Parker	. 847	63
Annona	.Red River		429
	.Jones		1,842
	.Jack		166
	•Mills		
	Fannin		• • • • •
	.Wilson		
Appleby	·Nacogdoches	. 405	208
	·Hill		450
	· Presidio		• • • • • •
	San Patricio		1,197
	Galveston		168
Archer City	.Archer	1,085	825
Arcola	Fort Bend	. 67	76
	.Denton		197
	.Hardin		• • • • •
Arion	.Milam	. 454	• • • • •
Arispe	.El Paso	4,356 616	1 704
Armstrong	·Tarrant	. 26	1,794
Armetrono	Washington	. 600	• • • • •
	·Reeves · · · · · · · · · · · · · · · · · · ·		60
	.Collin		29
	.Ward		43
	Smith		• • • • •
	LaSalle		60
	LaSalle		
	Lamar		163

, Place.	County.	Elevation.	Population.
Arvana	.Dawson	. 2,976	
	.Henderson		
	.Matagorda		
Ashworth			
	Polk		
	.Stonewall		600
	Henderson	490	2.261
	.Williamson		2,201
	.Cass		1,604
	Lamar		76
	.Denton		575
	Bexar		
	.Garza		
	Travis		33,218*
			55,210
Avery	Cons		600
Avinger	.Cass	. 391	200
	Jones		18
	.Tarrant		
Axtell	.McLennan	. 524	220
Bacon	.Wichita	. 1,044	
Baggetts			• • • • •
Daggetts	Red River		320
Pailor	Fannin	$\frac{1}{705}$	360
BAIRD	.Callahan	1,708	1,710
	.Cottle		1,110
			* * * * * * *
Baldridge	. Pecos	. 2,513	• • • • • • • • • • • • • • • • • • • •
Baldwin			40
	. Dallas		0 -00
	Runnels		3,536
BANDERA			419
	Brown		512
	.Nueces		20
Bard	.Wilbarger	1,426	
Bardwell	Ellis	. 478	400
Barker	Harris	. 109	• • • • •
Barnnart	Irion	. 2,549	• • • • • •
Barnum	Polk	. 222	29
Barreda	.Cameron	. 38	• • • • • • • • • • • • • • • • • • • •
Barry	Navarro		350
Barstow	Ward	,	800
Bartholomew	Trinity		12122
Bartlett	.Williamson	. 599	1,815
Bassett	Bowie	. 245	63
BASTROP	Bastrop	368	1,707
Dataman	Hastron	. 473	33
BATESVILLE	Zavalla	700	80
Battle Hill	Eastland	1,600	• • • • •
Baxter	Henderson		35
BAY CITY	.Matagorda		3,156
Bay Prairie	. Matagorda	40	• • • • •
Bayview	. Galveston	~ 25	
Beach	Montgomery	212	• • • • •
Beadle	. Matagorda	37	
Reagley	Fort Bend	. 112	70
Beaukiss	Williamson	\dots 502	114
BEAUMONT	. Jefferson	21	25,433*
18—Min.			

Place.	County.	Elevation.	Population.
Beckville	-	326	606
	Travis		23
BEEVILLE	Bee	214	3,269
	Montague		181
	Pecos		
	El Paso		25
	Harris		
	Young		
Bellevue		1,029	413
	Grayson	674	496
Belt Junction	Tarrant	91	
	Austin	263	1,076
	Austin	200	
	Bell	511	4,164
Belton Junction	Bell	530	• • • • •
Benarnold	Milam	392	250
Benavides	Duval	390	$\overline{233}$
Benbrook	Tarrant	658	76
Benchley	Robertson	301	80
	Newton	107	
	Harris	79	• • • • • • • • • • • • • • • • • • • •
	Polk	234	25
	Delta	465	400
	Knox	1.456	400
	Palo Pinto	747	200
	Runnels	1,716	25
Benonine		2,142	160
Ben West		37	
	Goliad	194	250
	Bexar	542	
Berkshire	Wise	834	
Bernicker	Fisher	2,137	
Bertram	Burnet	1.268	450
Berwick	Jack	1,093	
Bessemer	Llano	1,009	
Bessmay	Jasper	92	850
Bethel	Tarrant	694	
Bettie	Upshur	330	284
Big Cypress		349	
	Reagan	2.677	400
	Upshur	336	750
BIG SPRING	Howard	2,397	4.102
Big Wells		532	-,
Billum	Tyler	182	
Birds		723	
Bisbee		705	
Bishop	Nueces	495	
Bissell		300	
Bivins	Cass	314	302
Bixby	Cameron	65	
Black		3.944	
	Nolan	2,100	
Blair		2,002	25
	Liberty	351	
Blanchard		222	
Blanco		1.250	469
Blanket		1.601	425
	Caldwell	562	

Place.	County.	Elevation	Population.
	.Newton		25
			400
	.Matagorda		
	.Angelina		25
	.Harrison		
Dioagett	.Harris	. 98	
Bloomourg	.Cass	. 309	400
	.Navarro		903
Bloomington			25
Blossom	.Lamar	. 530	87fl
Blue	.Lee	. 475	30
	Erath		436
	.Llano		48
	.Hill		600
	.Shelby		• • • • • •
BOERNE	.Kendall	. 1,405	886
Bogata	Red River	. 418	247
Boise	Deaf Smith	. 3.955	
Boling	.Wharton	. 83	
Bolton	.LaSalle	. 433	
Bomarton	.Baylor	. 1,409	400
Bon Ami	.Jasper	. 148	35
BONHAM	Fannin	. 568	4,844
Bonita	.Montague	. 929	375
Bonita Junction	.Nacogdoches	. 354	
Bonney	.Brazoria	. 51	27
Bonus	Wharton	. 144	63
Bon Wier	.Newton	. 76	100
	Fort Bend		50
Boracho	.Culberson	. 4.451	
	.Colorado		
	.Parmer		200
	.Polk		
Bowie	. Montague	. 1.125	2,874
Bowieville	.Matagorda	. 30	-,
Boyce	Ellis	519	160
	.Wise		550
Boynton	.Angelina	. 276	
BRACKETTVILLE	Kinney	1.100	925
Braden	Bexar	1.319	
Bradshaw	Taylor	. 1,976	120
BRADY	McCulloch		2,669
Brage	Hardin	124	2,000
Brambleton	Tarrant	. 649	
Brand	Scurry	2.365	
Brandenburg	Stonewall	1.674	
Brandon	Hill	. 621	401
	.Tarrant		76
Brashear	Hopkins	. 513	26
	Hartley		
	.Brazoria		633
	.Palo Pinto		175
	.Stephens		750
	. Robertson		808
RRENHAM	. Washington	. 332	4,714
Bridgenort	. Washington	. 754	2,000
Drin	. Wase	. 538	4,000
	Ellis		260
	San Augustine		120
Drosqus	. Dan Augustine	. 240	120

Place.	County.	Elevation.	Population.
Bronson	Sabine	. 326	550
	Coke		635
Brookesmith			150
Brookshire	Waller		$\overline{700}$
Brookston			237
	Sterling		
Broughton			• • • • • •
Browndel			• • • • • •
	Terry		275
	Henderson	376	89
	Cameron		12.310*
BROWNSVILLE .	Brown	. 1.342	6.967
BROWN WOOD	McI oppon	. 1,542 . 592	
Bruceville	McLennan	539	325
Brundage	Dimmitt	. 959 . 352	• • • • •
Brunswick	Cherokee	. 354	4 7 0 0
BRYAN	Brazos	. 367	4,132
Bryson	Jack	. 1,227	350
Buchel	DeWitt	. 264	• • • • • • • • • • • • • • • • • • • •
Buckeye	Matagorda	. 43	40
Buckholts	Milam	. 525	500
Bud Matthews	Shackelford	1,760	
Buda	Hays	716	450
	Garza		
Buffalo	Leon	. 397	310
Buffalo Gap	Taylor	. 1. 979	249
Bulcher	Cooke	746	
Bullard	Smith	502	450
Buna	Jasper	. 76	160
Bunker Hill	Jasper	70	
Burdette	Caldwell	458	
Burk	Wichita	1.030	
Burkburnett	Wichita		
	Angelina		161
	Williamson		
Burleson	Johnson	708	368
	Milam	421	600
	Burnet	$1.\overline{294}$	981
	Wharton	97	
	Lubbock		• • • • •
Burroughs		148	• • • • • •
Durton	Washington	415	425
Duch I and	Potter	3.788	40
Dust Danu	Bastrop	461	- · ·
Dutiers	Clay	1,007	800
Byers	Hill	662	350
Deemd	Dimmitt	600	
Byrd	Diminite	.000	
Caball	Fort Bend	00	
		88	
	Val Verde	1,417	
	Webb	607	31
	Hunt	533	550
	Nueces	31	60
Calaveras	Wilson	413	369
CALDWELL	Burleson	406	1,476
Calef	Tarrant	838	
Call	Newton	95	100
Callan	Menard	2,080	

Place.	County.	Elevation.	Population.
	. Robertson		$^{-2.579}$
	.Nueces		_,
Camden	.Polk	. 305	66
	.Milam		3,263
	.Denton		• • • • •
	Hunt		508
	.Atascosa		27
	Limestone		
	Hemphill		1,648
	.Van Zandt		600
Cantrell	.Nacogdoches		
Canufillo	.El Paso		
	Stephens		
Canyon City	Randall	. 3.566	
Canlen	.Galveston	. 12	30
Capron	.Haskell	. 1,567	
Carbon	Eastland	. 1.591	479
Carbondale	.Bowie	. 252	
Carey	Childress		60
Caribon	.Nacogdoches		
Carl	.Navarro	. 354	
Carlos	Grimes	. 255	
Carlobad	.Tom Green		• • • • •
Carisbau	Clay	972	• • • • •
Carmine	Fayette	447	400
	Polk		42
Carmona	Haskell	1,560	
Carney	.Nacogdoches		• • • • •
Caro	.Bexar		60
Carpenter	. Dimmitt	600	350
Carrizo Springs	Dellog		525
Carrollion	Dallas		320
Carruth	Fannin		• • • • • •
Carson	Panola	. 292	1,350
Cartnage	. Kaufman	453	1,000
Cartwright	.Angelina		• • • • •
			60
	.Hunt		205
Cason			98
	.Cass		
Cassin			112
	Llano	. 307	406
	Austin		
	.Kaufman		296
	.Bastrop		242
	. Dallas		
	. Matagorda		21
	. Williamson		16
	Travis		
	Crosby		821
	.Hunt		724
	Collin	1 1 1 1	
Center			1,684
CEMEED VIII	.Kerr		1,573 400
CENTERVILLE	Leon	1 974	400
	Lampasas		• • • • •
Chamberin	. Dallam	. 3,952	• • • • •
	. Pecos		• • • • •
Chancy	.Angelina	. 290	* * * * * * .

Place.	County.	Floretian	Population.
	. Henderson		341
	Harris		200
	Hartley		300
Chappell Hill			813
	Runnels		
	. Atascosa		
	Harrison		• • • • • •
	.Callahan		
	Cherokee		
	Jefferson		25
	.Colorado		· · · · · ·
Chenango	Brazoria	. 461	
	.Navarro		100
	San Saba		250
Chester			200
	Colorado		100
Chew	Anderson	. 371	
Chico	. Wise	942	642
Chihuahua	Hidalgo	124	
CHILDRESS	Childress	1,877	3,818
Chillicothe	Hardeman	1,400	1,207
Chilton	Falls	425	400
China	Jefferson	45	174
Chireno	Nacogdoches		276
Chispa	Jeff Davis		
Chita	Jefferson	41	
Choctaw	Grayson	$5\overline{78}$	
Chorn	Scurry	3,307	
Chriesman	Burleson	452	150
	.Atascosa		
	Tom Green		
	Guadalupe		250
	Tyler		
Circleville	Williamson	550	100
Cisco	Eastland	1.608	$2,\overline{410}$
Citrus Grove	Matagorda		-,
	Kent		150
	Erath	1,093	120
Clara	Bee	134	1
CLARENDON	Donley	2.727	1.946
Clarks	Calhoun	31	1,510
	Red River	442	2,065
CLAUDE	Armstrong	3,405	692
Clawson	Angelina	372	82
Clay	Burleson		$1\overline{20}$
Clearfork	Caldwell	567	
Clear Fork	Jones	1,506	
Clear Lake	Collin	464	100
CLEBUDNE	Johnson	764	11,587*
Cleveland	Tiberty		
Clevenger	Nacogdoches	22F	800 100
Citals	Llano	4050	
			19
Clifton	Potter		1 100
Clifton by the men	Bosque	670	1,137
Climar	Galveston	20	
Clino	INACOGUCHES	200	
Clint	Uvalde		39
Onnt	El Paso	3,630	200

Place.	County.	Elevation.	Population.
Clinton	.Harris	567	2 0 2 4 4 4 4 4
	Goliad		
	Fort Bend		24
	Bastrop		
Closner	Hidalgo		
Clyde	Callahan	1.980	495
Coahoma	Howard	2,399	350
Coates	Taylor	1,940	25
Cobbs	Kaufman	523	200
Coburn	Lipscomb	2.644	20
Codman	Roberts	. 2,885	
COLDSPRING	San Jacinto		439
COLEMAN	Coleman	. 1,690	3.046
Coleman Junction	.Coleman	. 1.680	
Collegeport	.Matagorda	. 13	200
	Brazos		
Collins	Nueces		
Collingville	Grayson	744	791
Colmegneil	.Tyler	295	632
Cologna	Goliad	130	
COLORADO	. Mitchell	2.067	1.840
	Brazoria	-	
	.Colorado	•	-,
	.Comanche . J		2,756
	.Cameron		
	.Kendall	. 1,429	600
	. Hunt	548	2,818
	.Hopkins	. 532	650
	.Val Verde		63
	.Comanche	. 1,241	40
Concord	.Hardin		100
	.Presidio		
Conlen	.Dallam	. 2,927	
Conley	.Johnson		
Connell	Orange		
CONROE	.Montgomery	213	1,374
Converse	Bexar	. 713	63
Conway	.Carson	. 3,419	f (4.4 (4))
Cook's Point	.Burleson	. 308	87
Cook's Springs	.Gravson	. 636	
Cookville	.Titus	. 422	425
Cooledge	Limestone	. 535	200
	Delta	495	1.513
	.Collin	561	204
	Dallas		118
	Coryell		600
	Bexar		
Corbet	.Navarro	397	69
Corbyn	.Comal	663	69
	.Denton		41
Corlena	.Dallam	. 4,520	$2\overset{1}{0}\overset{1}{0}$
Corley	Bowie	295	
CODDING OTTOTOM	Nucces	. 470 9E	9,720*
Convigen	Nueces	. 00 902	9,140°
CODGICANA	. Navarro	∠∠0 110	0 0 9 4 %
LIDESILIANA	Navarro	417	9,934*
Cortes	.Matagorda	1 000	• • • • •
Coston			1 000
COTULLA	.LaSalle	. 442	1,880

Place.	County.		Population.
Coughran	.Atascosa	. 345	
Coupland	.Williamson	525	300
Courchesne	.El Paso	. 3,720	• • • • •
	Grimes		228
	.Hill		300
Cowart	.Tyler	. 265	
Cowen	. Wise	873	
Cozart	. Taylor		
	Fort Bend		
	Cherokee		14
	.Victoria		• • • • •
Crandall	Kaufman	430	500
Cranell	Refugio		
Crawford	McLennan	. 687	516
Creamer	Comanche	. 1,231	25
Creedmoor	Travis	. 630	145
Cresson	Hood	1,047	279
Crisp	Ellis	399	84
	Houston		3,947
	Harris		150
CROSBYTON	.Crosby		120
Cross	Grimes		125
Cross Plains	.Callahan	. 1.710	300
	Harris		
	Grimes		
	Foard		1,341
Crowley			275
Crum	.Anderson	. 350	
	.Zavalla		350
	Stephens		
Crystal Lake	Anderson	. 305	• • • • •
CUERO	. DeWitt	. 177	3,109
Cumby	.Hopkins	. 635	700
	.Navarro		• • • • • •
	Nacogdoches		600
	.Carson		405
	.Harris		125
Cypress MIII	.Blanco	976	38
DaCosta	.Victoria	. 67	
Dacus	Montgomery	. 261	100
Daffan	Travis	616	
DAINGERFIELD	. Morris	. 397	1.100
Dakin	Young	. 1.139	
Dalberg	.El Paso	4,185	
Dale	·Caldwell	. 520	95
DALHART	Dallam	. 3,985	2,580
DALLAS	Dallas	. 425	92,104*
Dallas Junction	Tarrant	. 31	
	Brown		• • • • • • •
Danbury	Brazoria	. 28	40
Dardon Springe	Hockley	. 3,341	• • • • •
Darling	Lee		• • • • •
	. San Saba		• • • • •
Daugherty			• • • • • • • • • • • • • • • • • • • •
	.Henderson		
Davenport	Red River		

Place.	County.	Elevation	Population.
Place.	Burleson	346	=
			• ; • • •
	Hill		• • • • •
	Deaf Smith		009
	.Navarro		803 650
	Liberty		
Dean			100
	·Burleson		106
Deaver	•Grayson		
DECATOR	.Wise	. 1,058	1,651
	.Harris	. 42	59
	.Harris		26
	.Bowie		650
	Brown		1 015
	.Comanche		1,015
	.Matagorda		37
	.Caldwell		- •
	Jefferson		
	.Val Verde		4,000
Delrose			4 4 4 0 0 5
	Grayson		14,409*
	•Falls		* ::::::
	•Denton		4,732
	•Lamar		700
Derby	Frio	. 542	30
Dermott	Scurry	. 2,442	• • • • • • • • • • • • • • • • • • • •
	.Travis		16
	Red River		1,056
Devers	·Liberty	. 58	187
	.Val Verde		
	·Medina		1,042
	Fort Bend		49
	• Medina		266
	Fannin		
	.Cherokee		250
	.Angelina		100
Dickens			375
	Galveston		250
Dickworsham		. 888	••••
	.Frio		500
Dillworth	Gonzales	. 288	120
Dime Box	Lee	. 372	129
	·Live Oak		17
	Wharton		
	Reeves		20
	Hunt		74
	• Montgomery		168
	LaSalle		• • • • •
	·Nacogdoches		
Dodd City	Fannin	. 669	
Dodge	Walker	. 402	350
Dodsonville			• • • • •
	Brazoria		100
	Freestone		100 28
	.Collin		40
	Angelina		• • • • • •
	.Wharton		100
	Nolan		100
Dorchester	.Grayson	. 001	100

Place.	County.	Elevation.	Population.
Dorso	. Val Verde	. 1.456	
	Orange		
	.Eastland		75
	.Tyler		60
Douro			
	Fisher		• • • • • •
	Jasper		
	.McLennan		134
	Limestone		
	. Bowie		
	.Nueces		
	. Houston		100
	.Terrell		50
Dublin			$2.5\overline{51}$
	Shelby		2,002
	.Garza		
Duke	Fort Bend	. 72	26
Dulls	LaSalle	. 361	
	Moore		200
	.Harris		
	Angelina		
Duncan	·Hartley	3,913	
Duncanville	.Dallas	. 727	150
	Archer		250
	Lynn		
Dunham	.Nacogdoches	278	
Dunlay	. Medina	. 997	72
Dunn	. Fayette	. 332	
Durham	.Borden	. 258	
Durst	.Angelina	325	
Duster	.Comanche	. 1,390	126
Duval	.Travis	. 650	
	Fort Bend		• • • • • •
Dyersdale	. Harris	62	
El-cala INIa+	T31 Th	4:450	4
	. El Paso		54
Eagle Lake			1,717
Eagle Pass			3,536
	Parker		3,000
	Wharton		250
	.Brazoria		200
	Dallas		
	Robertson		46
	Liberty		
	Eastland		855
	.Rusk		
East Temple	. Polk	. 241	
East Winnsboro	. Wood	. 525	
Ebenezer	.Hidalgo		
Echo	Bell	. 642	
Echo	Orange	. 19	
Ector	Fannin	652	404
Edburke	.Brazoria		• • • • • • • • • • • • • • • • • • • •
Eddy			575
	. Concho		450
	. DeWitt		79
ragewood	.Van Zandt	. 460	550

Place.	County.	Elevation.	Population.
EDINBURG			
	.Brazoria		
	Jackson		1,144
Edroy		•	
	.Clay		
Egan			100
	.Wharton		25
	.Titus		
	Dallas		
	.Harris		
	Wharton		1,778
Eldridge		and the second second	25
Eluriuge	Wishits		640
Electra	. Wichita	514	
	. Milam		1 707
Elgin	Bastrop	. 977	1,707
Enasyme	Stephens		
Elizabeth			
Elkhart		390	600
	.Smith		• • • • • •
Ella	.Jim Wells		
	Hunt		
	.Fayette		488
Elliott		. 379	41
Elmaton	.Matagorda	. 40	
Elmdale	.Taylor	. 1,786	
	.Bexar		300
Elmmott	.McLennan	. 518	247
Elmo	.Kaufman	. 504	410
Elna	.Wise	. 935	
	.Jim Wells		
EL PASO	.El Paso	3.711	49,505*
El Toro		′	
Elvista	.Jefferson	. 7	
Emerson	.Terrell	. 3,090	
	Navarro		225
	Rains		426
	.Angelina		
	LaSalle		627
Engle	Fayette	. 364	226
Englewood	Harris	. 430	
	Delta		326
Ennis			5,669
Enos	Waller		
Eppler	Garza		
Erin	Jasper	. 59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Fisher		150
Totalline	Hall	. 1,359	400
	El Paso		
Etoile	Nonedoches		
			40
			• • • • • •
	Harris		
	.Henderson		250
	.Jasper		
Evans		,	
	Hardeman		• • • • •
	Leon		• • • • •
	.San Patricio		• • • • •
Ewing	Angelina	. 312	

Place.	County.		Population.
Exit	Hartley	3,325	• • • • •
Experimental Farm	Hidalgo		
	Bowie	. 339	
Ezelle	Ellis	491	
Fabens	El Paso	3,612	25
	Harris		71
	Burnet		60
	Hunt		248
	Cooke		
Faker		~ 4 ^	
FALFURRIAS	Brooks	. 119	750
Fallon			
	Karnes	. 309	300
	Baylor		• • • • •
	Jefferson		80
	Goliad		200
	Live Oak		
	Angelina		
	Dallas		205
Farmersville	Collin	611	1,848
	Limestone		73
	Parmer		200
	Parmer		
	Rockwall		212
	Ellis		
	Harris		
Fawcett			
	Culberson		
	Fayette		274
Fedor	Lee	. 424	
	Val Verde		
	Liberty		
Felton		. 712	
	Terrell	. 2,475	
	Hale		
	Upshur		• • • • •
	Cameron		
	Ellis		1,233
	Potter		* * * * * *
	Llano		111
	El Paso		• • • • •
	Bowie		• • • • •
Finney			• • • • • •
	Dallas		21
	Fisher		41
Fishers			
Fitze	Travis		• • • • • •
	Matagorda		
	Harrison		
	Galveston		• • • • •
Flanagan			68
	Fayette		886
Flat Rock			
Fleming			
	Hardin		• • • • •
	Orange		

· ·			
Place.	County.	Elevation.	Population.
Flewellen	Fort Bend	. 135	
	Smith		200
Florence			363
	.Wilson		1,398
Florine	Bexar	. 571	
Flournoy	San Augustine	. 301	
	Hunt	. 601	231
	Floyd	. 3,137	664
Fluvanna	Scurry		450
Flynn	Cass	. 472	22
Folsom	Potter	3,635	
Footes	Gregg	. 273	
Forbes	Newton	. 111	• • • • • •
Formil	Coryell	. 822	• • • • • • •
Forney	Kaufman	. 473	1,114
Forreston	Ellis	. 540	233
Fort Bliss	El Paso		• • • • • • •
Fort Brown	Cameron	. 57	
	.Coke		
Fort Clarke	Kinney	. 1,050	
Fort Davis	Jeff Davis	. 4,927	1,061
Fort Griffin	Shackelford	. 1,275	
Fort Hancock	El Paso		34
Fort McIntosh	.Webb		
Fort McKavett	. Menard	. 2,155	136
Fort Ringgold	Starr	. 250	
FORT STOCKTON .	Pecos		439
FORT WORTH	.Tarrant	. 614	73,312
Fostoria	.Montgomery	. 170	${\bf 150}$
Fouts	Liberty	. 106	
Fowler	.Bosque	. 565	69
Fowlerton	.LaSalle	. 335	
FOWIKES	Wichita	. 1,092 . 911	• • • • •
Francis	Wise	. 42	• • • • •
Francitas	Parker	1,101	
	.Robertson		869
	Anderson		550
Fratt			• • • • • •
FREDERICKSBIRG	Gillespie		2,100
Frederickshurg Let	Gillespie	1,310	2,200
Freestone	Freestone	. 506	
Fregoring	Hardin	. 49	• • • • •
Fregnal	Cameron	25	
Fresno	Fort Bend	79	
Frio	LaSalle	. 3.998	
Friona	Parmer	. 3.958	200 .
Friotown		. 625	59
	.Collin		625
Frost	.Navarro	. 528	702
Fruitland	.Atascosa	. 1,050	
Fruitvale	.Van Zandt	. 458	50
	.Cherokee	. 576	
Fulda			
Fuller			
Fullerton	Liberty	. 81	
	.Scurry '		
Fulshear	Fort Bend	. 132	247

Place County 117	Place.	County.	Elevation.	Population
Gabriel River Williamson 911 Gainesmore Matagorda 21 GAINESVILLE Cooke 730 7,624 Galgo Presidio 4,793 Gallotin Cherokee 355 125 Galloway Cass 294 Galloway Cass 294 Gammon Fisher 2,159 Gammon Fisher 2,159 Gamdo Jackson 71 558 Ganahl Kerr 1,510 Condendendendendendendendendendendendenden	Fugua	Liberty	. 117	
Gainesmore Matagorda 21 GAINESVILLE Cooke 730 7,624 Galgo Presidio 4,793 Gallomo Cherokee 355 125 Galloway Cass 294 GALVESTON Galveston 6 40,289* Gammon Fisher 2,159 Gamdo Jackson 71 558 Ganahl Kerr 1,510 Gardendale LaSalle 586 Gardendale LaSalle 586 Garled Dallas 541 804 Garland Dallas 541 804 Garrer Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Gary Panola 286 250 Gastoni Fort Bend				
GAINESVILLE Cooke 730 7,624 Galgo Presidio 4,793 Galloway Cass 294 GALVESTON 6 40,289* Gammon Fisher 2,159 Ganado Jackson 71 558 Ganahl Kerr 1,510 58 Garden City Glasscock 2,800 200 Gardendel LaSalle 586 586 Garfield Travis 494 63 Garled				
Galgo Presidio 4,793 Gallatin Cherokee 355 125 Galloway Cass 294	Gainesmore	. Matagorda	. 21	• • • • • •
Gallatin Cherokee 355 125 Galloway Cass 294 GALVESTON Galveston 6 40,289* Gammon Fisher 2,159 Ganado Jackson 71 558 Ganahl Kerr 1,510 586 Gardendale LaSalle 586 200 Gardendale LaSalle 586 36 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Gary Panola 286 341 Garze Denton 586 250 Gastonia Kaufman 456 625	GAINESVILLE	.Cooke	. 730	
GAILVESTON Galveston 6 40,289* GAMDESTON 71 558 Gannado Jackson 71 558 Ganahl Kerr 1,510 Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garland Dallas 541 804 Garrer Parker 935 200 Garrett Ellis 557 162 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gastonia Kaufman 456 250 Gastonia Kaufman 456 25 Gastonia Kaufman 486 450 Garzei Milam	Galgo	.Presidio	. 4,793	
GALVESTON Galveston 6 40,289* Gammon Fisher 2,159 Ganado Jackson 71 558 Ganahl Kerr 1,510 Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 46 Gary Panola 286 341 Garzet Denton 586 250 Gastonia Kaufman 456 450 Gaston Fort Bend				125
Gammon Fisher 2,159 Ganado Jackson 71 558 Ganahl Kerr 1,510 Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garnand Dallas 541 804 Garnand Dallas 557 162 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gary Panola 286 341 Garza Denton 586 250 Gary Panola 286 341 Garza Denton 586 250 Gary Panola 286 341 Garza Manon 382 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Ganado Jackson 71 558 Ganahl Kerr 1,510 Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 250 Gastonia Kaufman 456 25 Gastonia Maufman 387 289 Gastonia Maufman 387 289 Gastonia Maufman 387 239 Gastonia Maufman				40,289*
Ganahl Kerr 1,510 Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 450 Garza Denton 586 250 Gastonia Kaufman 456 450 Gary Port Bend 126 25 Gastonia Kaufman 456 450 Gary Panola 286 341 Garza Denton 586 250 Gattille Coryell 774	Gammon	Fisher	. 2,159	
Garden City Glasscock 2,800 200 Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 250 Gastonia Kaufman 456 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 25 Gastonia Kaufman 387 239 Gay Hill Washington 342 216 Garaci	Ganado	.Jackson	. 71	
Gardendale LaSalle 586 Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 25 Gatzesville Covyell 774 1,929 Gause Milam 387 239 Gay Hill Washington 344 216 George Madison 363 47 George Madison 363 447 100 George West Live Oak 161 161 Germania Midland 2,745 Gilbert Jefferson 35 Giller	Ganahl	Kerr	1,510	
Garfield Travis 494 63 Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 456 Gastonia Kaufman 456 6 Gastonia Kaufman 456 6 Gastonia Kaufman 456 6 Gates Milam 387 289 Gay Hill Washington 344 216 Gares Milam 387 289 Gay Hill Washington 344 216 George Madison 363 47 100 George Madison 363 46 461 421	Garden City	Glasscock	. 2,800	
Garland Dallas 541 804 Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 25 Gastonia Kaufman 387 289 Gasy Hill Washington 344 216 Garze Milam 387 289 Gay Hill Washington 344 216 George Madison 363 344 216 George Madison 363 344 216 George West Live Oak 161 42 3,096 George West Live Oak 161 42 3,096 36 GILMER </td <td></td> <td></td> <td></td> <td></td>				
Garner Parker 935 200 Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 47 GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 161 162				
Garrett Ellis 557 162 Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 45 Gastonia Kaufman 456 47 GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 6 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 6 Germania Midland 2,745 . GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 . Giller Upshur 370 1,484 Gilmer <	Garland	Dallas	. 541	
Garrison Nacogdoches 380 627 Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 25 Gastonia Kaufman 456 25 Garza Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 161 Gilbert Jefferson 35 36 <td< td=""><td>Garner</td><td>Parker</td><td>. 935</td><td></td></td<>	Garner	Parker	. 935	
Gary Panola 286 341 Garza Denton 586 250 Gaston Fort Bend 126 25 Gastonia Kaufman 456 GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 161 Germania Midland 2,745 36 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 36 Girard Kent 2,113 484 Girvin Pe	Garrett	Ellis		
Garza Denton 586 250 Gastonia Kaufman 456 25 Gastonia Kaufman 456 6 GATESVILLE Coryell 774 1,929 Gause Milam 387 239 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 36 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 161 Germania Midland 2,745 1,375 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 1,484 Girvin Pecos 2,285 33 550 Gladewater Gregg 333 550 350 <td>Garrison</td> <td>.Nacogdoches</td> <td></td> <td></td>	Garrison	.Nacogdoches		
Gaston Fort Bend 126 25 Gastonia Kaufman 456 456 GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 63 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 66 George West Live Oak 161 66 Germania Midland 2,745 61 Germania Midland 2,745 61 Glibert Jefferson 35 6 Gilbert Jefferson 35 6 Gilse Donley 2,396 36 Gilker Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 6 Girvin	Gary	Panola	. 286	
Gastonia Kaufman 456 GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 161 Germania Midland 2,745 1,375 GIDDINGS Lee 512 1,375 Gilber Jefferson 35 - Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 - Girard Kent 2,113 - Girard Kent 2,113 - Girard Wharton 117 500 Glazier Hemphill <t< td=""><td>Garza</td><td>Denton</td><td>. 586</td><td></td></t<>	Garza	Denton	. 586	
GATESVILLE Coryell 774 1,929 Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161				25
Gause Milam 387 289 Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 Giles Reves 2,285 32 Gilader Reptos 2,285 33 550 Gladewater	Gastonia	.Kaufman	. 456	
Gay Hill Washington 344 216 Genoa Harris 47 100 George Madison 363	GATESVILLE	.Coryell	. 774	
Genoa Harris 47 100 George Madison 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girard Kent 2,113 Girard Kent 2,113 Girard Kent 2,113 Girard Wart 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham <t< td=""><td>Gause</td><td>. Milam</td><td>. 38%</td><td></td></t<>	Gause	. Milam	. 38%	
George Madison 363 GEORGETOWN Williamson 442 3,096 George West Live Oak 161 Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Goldsboro Coleman	Gay Hill	.Washington		
GEORGETOWN Williamson 442 3,096 George West Live Oak 161 Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Golde	Genoa	. Harris		7 * *
George West Live Oak 161 Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 75 Girvin Pecos 2,285 76 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenrio Deaf Smith 3,812 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Golden Wood 422 350 GOLDTHWAITE Mil	GEODGE	. Madison	. 363	
Germania Midland 2,745 GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150	GEORGETOWN	.Williamson	. 442	
GIDDINGS Lee 512 1,375 Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 1 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 601 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 </td <td></td> <td></td> <td></td> <td></td>				
Gilbert Jefferson 35 Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 1 Girvin Pecos 2,285 1 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 465 Glenrio Deaf Smith 3,812 60 Glidden Colorado 234 84 Golden Colorado 234 84 Goldey Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves				
Giles Donley 2,396 36 GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Goldey Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES		Lee		1,3 (9
GILMER Upshur 370 1,484 Ginger Rains 480 75 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 <td>Gilor</td> <td>Jenerson</td> <td>. 30</td> <td>9.6</td>	Gilor	Jenerson	. 30	9.6
Ginger Rains 480 75 Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenriose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich <td< td=""><td>CII MED</td><td>Donley</td><td>2,396</td><td></td></td<>	CII MED	Donley	2,396	
Girard Kent 2,113 Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal	Gingor	Dema	. 370	
Girvin Pecos 2,285 Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Girard	Kallis	9 1 1 9	(9
Gladewater Gregg 333 550 Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Girvin	Pesse	9 9 9 5	
Glazier Hemphill 2,601 475 Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 2 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodright Armstrong 3,145 150 Goodson Smith 476 Goodwin Comal 691 68	Gladewater	Cross	999	550
Glen Flora Wharton 117 500 Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Glazier	Homphill	2 661	
Glenham Bastrop 465 Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68		Wharton	117	
Glenrio Deaf Smith 3,812 Glenrose Somervell 600 Glidden "Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Glenham	Regtron	465	900
Glenrose Somervell 600 Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Glenrio	Deaf Smith	3 812	• • • • •
Glidden Colorado 234 84 Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Glenrose	Somervell		• • • • •
Godley Johnson 895 500 Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Glidden	Colorado		8.4
Golden Wood 422 350 Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Godley	Johnson		
Goldsboro Coleman 1,994 150 GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68				
GOLDTHWAITE Mills 1,580 1,129 GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Goldsboro	Coleman	1.994	
GOLIAD Goliad 167 1,261 Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	GOLDTHWAITE	Mills	1.580	
Gomez Reeves 3,272 GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	GOLIAD	Goliad	167	
GONZALES Gonzales 300 3,139 Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Gomez	Reeves	$3.\tilde{272}$	•
Goodlett Hardeman 1,578 100 Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	GONZALES	Gonzales		
Goodnight Armstrong 3,145 150 Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Goodlett	. Hardeman		
Goodrich Polk 97 100 Goodson Smith 476 Goodwin Comal 691 68	Goodnight	Armstrong	. 3.145	
Goodson Smith 476 Goodwin Comal 691 68	Goodrich	Polk	. 97	
Goodwin	Goodson	Smith	476	
Gordon				68
	Gordon	Palo Pinto	. 956	609

Place.	County.	Elevation.	Population.
Goree	.Knox	. 1.445	675
Gorman	Eastland	1,435	963
	Kaufman		18
	Smith		
Gover	Grayson	. 522	
	Palo Pinto		• • • • • • •
GRAHAM	. Young	. 1,045	1,569
GRANBURY	·Hood		1,336
	. Montgomery	. 136	
	. Dallas		994
Grand Saline	.Van Zandt	407	1,065
Grand View	Johnson	695	1,018
Cranco	William	. 578	1,708
	. Williamson		
Granite Mountain	Burnet	. 866	34
	. Houston		550
	Tarrant		681
Graphite	.Llano	. 987	
Grayburg	.Hardin	. 46	
	.El Paso		
	Jack		
Green	.Karnes	. 607	
Creenbrien	. Nathes	. 393	• • • • • • •
	.Smith		• • • • • •
	.Calhoun		• • • • •
Greens	.Harris	49	
GREENVILLE	.Hunt	552	9,696*
Gregory	.San Patricio	. 32	${\bf 122}$
	.Refugio		
	Newton		
	Grimes		
	. Polk		
CDOECDECK	Limestone	447	1 454
Choose Choose	Limestone	441	1,454
Groom	.Carson	. 3,214	
Grover	.Williamson	. 1,148	
GROVETON	Trinity	. 323	1,076
	.Comal		
Guadalupe	.Reeves	. 2,853	49
Guda	Falls	. 365	
Guffey	Jefferson	. 18	200
Guild	. Pecos	. 2.665	
Guion		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40
	. Galveston		
	.Grayson		300
	Falls		138
Gustine	.Comanche	1,193	212
Gypsum	. Hardeman	. 1,578	
Hacienda	.Uvalde	. 989	
Hagerville	Houston	. 328	66
	Dallas		
	Lavaca		1,379
Helgell	от		
Halsell	Clay		60
nalisville	Harrison	. 385	700
maiiville	San Saba	. 1,488	• • • • •
Halstead			
Ham	. Henderson	. 383	35
	. Hamilton		
Hamiltonburg	Live Oak	. 157	• • • • •
Hamlin		. 1,711	1,978

Place.	County.	Elevation.	Population.
Hammond	.Robertson	. 408	115
Hampton	.Tyler	. 288	• • • • • •
	Nacogdoches		
Hanev	Randall	. 3,593	• • • • • •
Hamrick	.Coleman	1,828	• • • • •
Hanny	.Swisher	. 3,564	250
Hamshire	Jefferson	. 17	31
	Tarrant		156
	Erath		83 .
Harlam	Fort Bend	. 1,282	
	.Cameron		600
Harlow	.Hunt	. 562	• • •
Harmagton	.Harris	. 73	• • • • •
Harrist	.Tom Green	. 10	• • • • • •
Horria	Fort Bend	$\begin{array}{ccc} . & 1,832 \\ . & 112 \end{array}$	• • • • •
			563
	.Harris		
Harrison	.McLennan	. 457	51
Transport	.Wilbarger	. 1,235	375
narrys	.Rockwall	. 420	• • • • • • • • • • • • • • • • • • • •
	.Newton		75
	.Hartley		200
	Montgomery		• • • • •
	.Camp		
Harwood			300
	.Haskell		2,436
	.Tarrant		175
Hasse			350
	Runnels		40
	.Hardin		• • • • •
Hawking	.Fort Bend	$\begin{array}{ccc} & 67 \\ & 394 \end{array}$	350
Hawkinsville	. Matagorda		
Hawley	Jones		400
Haymond	Brewster	3,879	27
	.Nacogdoches		
	.Clay		
	.Hardeman		25
Head Works	.Cameron	. 53	• • • • • • • • • • • • • • • • • • • •
Hearne	.Robertson	. 305	2,352
Hebbronville	.Jim Hogg	. 680	190
Hebert	.Jefferson	. 20	• • • • •,
Hebron	.Denton	. 517	
	.Donley		$\bf 325$
	.Bell		249
HEMPSTEAD	.Waller		1,849
HENRIETTA			2,104
Hermleigh	.Scurry	. 2,392	625
	.Rusk		1,750
Hensley	Jack	1,226	. : - : :
HEREFORD	.Deaf Smith	. 3,806	1,750
	.Wise	. 933	
	.Reeves		25
	.Cherokee		• • • • • .
	Brazos		
Hewitt	.Webb		79
Hevser	.Calhoun		
Heywood	Cameron	. 44	

	A	T31 44	Denulation
Place.	County.		Population.
Hetty		461	• • • • • •
	Lee		1 497
	. Hamilton		1,437
Higgins			92
High Island	.Galveston		78
			10
	.Coleman		
Hilda			
Hillendahl	.Tyler		72
Willia	Wharton	100	. 14
Hills	Lee		
HILLSBORO		·	6,115
	.Bastrop		49
Hilton	Grayson	691	T 0
Hindes	Atascosa		• • • • •
Hindman	Dawson		
Hinckley	Lamar	. 462	25
Hitchcock	Galveston	. 19	300
Hohhstown	Tom Green	. 1,950	
Hockley	Harris		296
Hodge	Tarrant		
Hoffman Junction	Titus	. 425	
Hogan	Cherokee	. 705	
Hogsett	Wise		
Holland	Bell		778
Holliday			130
Homer	Reeves		66
HONDO	Medina	. 887	
Honea	Montgomery	240	24
Honey Grove	Fannin	. 666	2,300
Honey Springs	. Dallas	. 446	
Hooks		375	500
Hoover	Gray	3,088	
Horton	.Delta	. 489	
Horton	Jasper	416	
Hot Wells	El Paso	4,283	
House Junction	Fort Bend	65	
HOUSTON	Harris		93,122*
Houston Heights	Harris		6,984
Hovev	Pecos		
Howe	Grayson	846	581
Howland	Lamar		226
Howth	.Waller	278	73
Hoxie	Williamson	611	
Hoya	Nacogdoches		
Hoyt	Wood	431	
Hubbard	Hill		1,843
Hudson			
Huff	Archer		25
Huffman	Harris	46	
Hughes Springs	Cass	373	600
Hull	Liberty		1 950
Humble	Harris		1,250
Hungerford	Wharton		183
Hunter	Angelina	335	$\begin{array}{c} 162 \\ 350 \end{array}$
	•	000	990
19Min.			* * * * * * * * * * * * * * * * * * *

Place.	County.		Population.
HUNTSVILLE	Walker	. 400	2,072
	Upton		
	Hunt		
	Dallas		204
	Randall		• • • • •
	Williamson		563
Hyatt	Tyler	. 109	
Iago	Wharton	. 87	100
Iatan	Mitchell	2.209	125
Iberis	Taylor		
	Lubbock		
Idlewild	Bexar	681	
Immermere	Erath	1.067	
Ina	Milam	443	
Inari			
	Victoria		93
	. San Patricio		36
Ingreside	Kerr	1.700	
Io			• • • • • •
	Grimes		200
Iona			200
Iowa Park	Wishits		603
			57.1
	Bosque		
	Coryell		• • • • • • • • • • • • • • • • • • • •
	Milam		
	El Paso		4 4 4 0
	Ellis	2 2 3	1,149
Itasca			1,356
	Montgomery		• • • • •
Ivy	Caldwell	440	• • • • •
P		1 0 7 4	1 400
	Jack		1,480
	Montgomery		
	Cherokee		2,875
Jamestown			• • • • •
	Kerr		• • • • •
	Williamson		*****
	Kent		700
Jean			• • • • •
Jeanetta	Harris		
	Bastrop		
	Marion		2,515
Jeffries	. Ellis	518	
Jericho	Donley	3,151	75
Jermyn	Jack	1,183	
Jessie	Hill	415	51
Jester	Navarro	407	29
Jewett	Leon	506	586
Jiha	Kaufman	407	
Jimdale	Clay	. 965	
Time Bayou	Cass	295	
Tool	Donmon	3,720	• • • • •
Jno. Camp	Williamson	57U	• • • • • •
Joaquin			400
Johnson City	. Blanco	1,200	
Johnstone	. Val Verde	1,075	• • • • •
Johntown	Red River	355	

Place.	County.		Population.
Joiner	Fayette	. 253	
Jolly	.Clay		42
	.Harrison		300
	Burnet		
Jordan			
	.Collin		274
	.Johnson		482
	.Haskell		
	Trinity		538
	.Atascosa		500
	Bowie		
	Fort Bend		63
Justin	Denton	. 644	476
Justiceburg	Garza	. 2,208	
-		•	
Kaffir	Swisher	. 3,478	
	Calhoun		
	.Montgomery		
Karnack	.Harrison	. 237	72
KADNEG CITY	Karnes	. 404	635
MARINES UIII	A management	. 404	
Kasota	Armstrong		
Katy	Harris		350
	Kaufman		1,959
Keechi	Leon	. 292	62
Keeler	Johnson	. 787	
Keenan	Montgomery	255	172
Keeran	Victoria	. 24	
Keller	Victoria	. 704	294
Keithton	Jasper	237	
Kellys	.Walker	381	
Kellyville	Marion	. 280	
	Angelina		59
Kemah			
	Kaufman		925
			$\begin{array}{c} 325 \\ 125 \end{array}$
	Lampasas		
Kendieton	Fort Bend	102	116
Kenedy	Karnes	. 271	1,147
	Liberty		
	Houston		425
	Tarrant		216
Kenney	.Austin	. 383	202
Kent	.Culberson	4,202	100
Kentuckytown	Grayson	. 810	112
Kerby	Hill	. 715	
	Navarro		945
	Kerr		1.843
	Falls		
	Cass		214
	Gregg		700
Killeen	Bell	. 853	1,265
Kingolo			,
Kingola	Wilbarger	. 1,171	
Amgsbury	Guadalupe	. 606	346
Kingsland	Liano	856	194
King's Mill	Gray	3,358	
Kingston	Hunt	. 631	278
Kingsville	Nueces	. 66	975
Kinney	Kinney	1,027	
Kirby	Bexar	707	

Place.	County.	Elevation.	Population.
	Jasper		1,000
Kirk	.Bexar	662	
Kirkland	Childress	. 1,705	
Kirtley	Fayette	. 320	
Kirvin	Freestone	. 464	160
Kittie	Live Oak	. 169	
	Walker		27
	Dallas		100
	Delta		220
	·Colorado		• • • • •
	Tom Green		
	·Uvalde		$\begin{smallmatrix}28\\925\end{smallmatrix}$
Knox City	Knox	1,517	
	Gonzales		
	Tarrant		329
Kosse			764
	Travis		
	Hardin		342
Kress			225
	Denton		550
	Hays		742
Kyle Quarry	Jasper	. 130	
	•		
LaBahia		. 147	• • • • •
	Wilson		• • • • • •
Lacerda			
Lacoste	Medina	. 719	250
	Fannin		1,293
	San Patricio		1,850
	Fayette Robertson		
	Hill		40
	Colorado		
	Burnet		200
	Wichita		
	Galveston		53
	Parker		75
	Dawson		500
Lamkin	Comanche	1,068	97
Lamont	Polk		
	Lampasas		2,119
	Dallas		1,115
	Bexar		• • • • •
Landes	Washington	365	• • • • •
Landrum	Cameron	45	
	Val Verde		68
	Cass		
	Fisher		• • • • •
	Harrison		• • • • • •
	Harris		674
	Brazoria		VI =
	Webb		15.461*
	Parmer		
Lark	Carson	3,336	• • • • •
La Rosa		7	• • • • •
LaRue	Henderson	478	100

Place.	County.		Population.
Lasca	.El Paso	. 4,472	
Lasher			• • • • •
	Marion		100
	.Dimmitt		• • • • • •
	. Wilson		342
	.Collin		178
	Jackson		23
	.Taylor		* * * * * * *
	.Kaufman		176
Lazare			30
	. Galveston		525
Leah			
	.Real		318
	.Williamson		283
	.Bowie		75
	Lee		• • • • • • • • • • • • • • • • • • • •
	Fayette		310
	Carson		• • • • • • • • • • • • • • • • • • • •
	.Camp		318
Lefors	.Gray	. 2,900	
	. Polk		300
	·Harrison		125
	.Kaufman		
	.Wheeler		80
	Hardin		
Lelia Lake			
	Eastland		
	Atascosa		
	Parker		. • • • • •
	Orange		
Lena	Fayette	. 314	• • • • •
	Lamar		• • • • • •
Lenox		,	
	Fannin		990
	Brewster		• • • • •
Leonidas			• • • • • • • • • • • • • • • • • • • •
	.Coryell		62
Leon Springs			158
	Randall		• • • • •
Letitia	.Harris		• • • • • •
Letot	Dallas	443	21
Leverte	Jasper	. 102	• • • • •
Levinson	Jeff Davis	. 3,885	• • • • • • • • • • • • • • • • • • • •
Levita	Coryell	. 932	89
Lewis	Anderson	. 331	
Lewisville	Denton	. 484	$\begin{array}{c} 900 \\ 525 \end{array}$
LIBERTY	Lee	456	980
Liberty Hill	Liberty	. 30	500
Lider	.Williamson	. 1,038 . 3,290	900
Lillard	.Hale	. 3,490	• • • • •
	.Hardin	. 38 . 706	• • • • •
Timestone	.Coryell	. 706 . 523	
Lincoln	Loo	. 943 . 364	148
Lindola	Lee	. 504 559	658
LINDEN	.Cass	. 959 . 270	675
Lindenan	.DeWitt	184	46
	.Cooke		151
	**************************************		101

Place.	County.	Elevation.	Population.
Lissie	.Wharton	. 156	60
	.Travis		168
Little	.Milam	. 343	
Littlefield	.Lamb	. 3,510	
Little River	.Bell		123
	.Brazoria		66
LIVINGSTON	.Polk	. 236	1,024
LLANO	.Llano	. 1,029	1,687
	.Culberson		
	.Caldwell		2,945
Lockney			750
	Marion		$\boldsymbol{200}$
Loeb	.Hardin	. 32	
Lofton	Lynn	. 3,036	• • • • • • • •
Lometa			550
	.Hidalgo		* * * * * * * * * * * * * * * * * * * *
	.Hunt		756
Long	.Cameron	. 58	• • • • • • • • • • • • • • • • • • • •
	Pecos		32
Longhorn	.El Paso	. 3,984	• • • • •
Longleaf	.Angelina	. 286	
Longmott	.Calhoun	. 21	29
	.Hardin		
LONGVIEW	.Gregg	. 339	5,155
Longview Jct	Gregg	. 338	• • • • •
	Fisher		• • • • •
	Roberts	. 2,663	
	.Mitchell		633
Lorena			675
	.Crosby		• • • • •
	.Colorado		
	Cameron		
	Falls		1,021
	.Harris		• • • • • •
Louetta	.Harris	. 165	40
Louise	Wharton	. 90	500
	.Cherokee		
	.Houston		$\begin{array}{c} 525 \\ 225 \end{array}$
	Young		
	Mason		
	Pecos		1,938
Lucas Lucas	Lubbock	. 5,148	•
	.Hansford		25
Lueders			$4\overline{25}$
	.Grayson		+20
LUFKIN	Angelina		2,749
Luke Wilson	Archer		2,1 40
Luling			1,404
Lumberton			1,404
	Liberty		
	Cameron		75
Lyons			459
Lytle	Atascosa		$2\overline{12}$
		• • •	
McAllen	.Hidalgo	. 122	
	San Patricio		
	Fisher		400

Place.	County.	Elevation.	Population.
McClure's	. Nacogdoches	240	
McConnell	.Haskell	1,516	
McCov	.Angelina	. 300	
McCov	Atascosa	310	
McDade	.Bastrop	. 566	418
McDow	Wharton	. 155	
McGee	Montague	. 548	
McGregor	.McLennan	. 713	1,804
McKay	.Ellis	. 423	
McKees	.Val Verde	. 946	
McKINNEY	.Collin	592	4,714
McLean	Grav	. 2.812	633
McNeil	Travis	. 837	${\bf 132}$
Mahank	Kaufman	. 395	750
Mahalla	.Baylor	1.265	
Macdona	Bexar	. 631	123
Magadania City	Liborty	116	
Mackay	.Wharton	105	
Mackay	Mood	379	
Mackgrille	Comanche	1.103	
Maddalina	Calhoun	53	
Madden	El Paso	3,666	
Mahl	Nacogdoches	521	80
Malakoff	Henderson	377	376
Malakoli	Armstrong		
Maiden	El Paso	4,263	550
Malone	Bowie	410	800
Maita	,,BOWIE	497	000
Mamie	Hidalgo Angelina		
Manard	Thoria	697	118
Manchaca	Travis	557	111
			300
Mangum	Eastland	750	000
Manhattan	Archer		
Mankins	Novemen		• • • • •
Mann	Navarro Travis Tarrant Angelina	525	900
Manor	Towns	580	627
Mansfield	Tarrant	322	
Manton	Angelina	. 56	113
Manvel	Brazoria	998	
Maple	Duamatan	4,039	300
Marathon	Collin	. 4,035	1.061
Marble Falls	Burnet	. 10%	494
MARFA	Presidio	. 4,688	
Margaret	Foard	1,370 675	60
Marianna	victoria	214	00
Marilee	Victoria	644	525
Marion	Guadalupe	044	
Markham	Matagorda		3,878
Marlin	Falls	383	482
Marquez	Leon	. 420	
MARSHATT.	Harrison	. 375	12,984*
Marston	Polk	. 190	• • • • •
Martinez	Bexar	690	275
Manuracal	Nolan	2,564 873	275 236
Morvevillo	COOKE	. 810	
MASON	mason	. 1,400	482
Matagorda	. Matagorda	. ช	402

Place.	County.	Elevation.	Population.
Mathis	.San Patricio	. 161	250
	.Dallam		
Maud	Bowie	. 284	375
	Orange		30
Maurin	.Gonzales	. 307	
Maxon Springs	Brewster	. 3,533	
Maxwell	·Caldwell · · · · · · · · · ·	. 605	225
May	.Brown	. 1,657	400
	.Cherokee		
	.Hill		
	Nacogdoches		• • • • •
Meadors	Dallas		
Meadow Lake			• • • • • •
Medicine Mound			150
	Bandera		117
	•Bee		
	•Archer		275
	·Collin		350
	McCulloch		80
	··Hall		1,936
	•Menard		450
Mendota	·Hemphill		50
Mercedes			1,209
	• McCulloch		375
Meredith			• • • • • • •
MERIDIAN	Bosque	. 791	718
	Hunt		322
	Taylor		2,008
	<u>H</u> ill		400
	Irion		• • • • • • •
	·Dallas		687
	·Grimes		• • • • •
Metz			• • • • •
Mewshaw		T. 1 L.	
Mexia	•Limestone		2,694
Mexico Jet	•Limestone	. 460	• • • • • • • • • • • • • • • • • • • •
MIAMI	Roberts	2,802	400
Michelson	·Wilson	. 444	• • • • • • • • • • • • • • • • • • • •
Middlewater	·Hartley	4,080	40
Midifelds			75
MIDLAND	··Midland		2,192
Midlothian	• Montgomery		868
	Ellis		
Mikagka	Live Oak	. 127	30
	Milam		481
	Runnels		1.302
	Ellis		766
	Bailey		
	. Washington		25
	Dallas		
	LaSalle		150
Millheim	Austin	. 177	59
Millican	Brazos	298	613
Millsap	.Parker	812	475
Milvid	Liberty	. 85	
Mineola	Wood	. 414	1,706
	.Milam		118
			110

	Place.	County.	Elevation.	Population.
	Mingo		. 574	• • • • •
		Palo Pinto		1,000
•		·Hidalgo		1,000
	Missouri City	Fort Bend	. 84	
	Mobberly	.Titus	. 323	
	Mobile	.Tyler	. 199	62
	Moccasin	.Coryell	. 812	
		Terrell		
	Monahan	.Ward	. 2,613	150
	Monroe	·Lubbock	. 3,257	
	MONTAGUE	.Montague	. 1,075	284
		.Hidalgo		
		.Angelina		
		.Montgomery		672
	Montgomery Jct	.Montgomery	. 325	• • • • •
		.El Paso		• • • • •
		Irion		• • • • •
		.McLennan		983
	Moore			325
	Moren	Shackelford		400
		Jefferson		
				001
		. Bosque		831
		.Howard		400
•		.Cherokee		100
		.Polk		263
		.Tarrant		,
		.Nacogdoches		• • • • •
		.Montgomery		
		Lavaca		900
		.Coryell		38
		.Hill :		634
		Harris		• • • • •
	MT. PLEASANT	.Titus	. 405	3,137
	Mt. Selman	.Cherokee	. 692	168
	MT. VERNON	.Franklin	. 476	1,200
		.Cooke		600
	Muldoon	.Fayette	. 343	160
		. Bailey		
		.Mills		
	Mulvey			
		.Robertson		193
		.Floyd		
		.Knox		1,500
		.Limestone		40
		. Henderson		120
		Oldham		
		.Collin	575	92
	Murray	Young	. 3,812	36
	Murvaul	. Panola	. 275	141
	Muserava	Franklin	427	58
		Denton		93
				325
	Myra	.Cooke	910	340
	No alima	Noonadoob - ~	0.00	
	Naclina	.Nacogdoches	. 300	9 9 6 6
		Nacogdoches		3,369
		Galveston		1 170
	Naples			1,178
	narcisso	Cottle	. 2,000	• • • • • •

Place.	County.	Elevation.	Population,
	Burnet	. 1,476	29
	Bowie		350
	Medina		
	.Navarro		50
	Grimes		3,284
Navasota	Modines	. 331	
Neal	.Madison	. 331	005
Neches	Anderson	. 411	325
	Jefferson		250
Neelie	San Patricio		
Neff	Trinity		
Nelleva Jct	.Brazos		
Nelms	Trinity	. 224	
	Cherokee		
Neuville	Shelby	. 323	450
	Collin		510
	Wise	-	300
	Robertson		103
New Birmingham	.Cherokee		100
New Birmingham	Powis		950
New Boston	Bowie	• ••	
	Comal		3,165
Newby	Leon	. 453	
Newcastle	Young	. 1,166	550
New California	Zavalla	. 673	
New Camp	Nacogdoches	. 312	
New Caney	Montgomery	. 98	127
Newlin	Hall	1,800	125
	Marion		
	Camp		150
	Newton		575
	Austin		444
New Willard	Polk	. 410	107
Neyland			
Niblock	San Saba	1,732	
	Gonzales		36
Nivac	Nacogdoches		
Nix	Lampasas		48
	Gonzales	396	850
Nocona	Montague	930	1,338
Nolanville	Bell	695	138
	Jefferson		100
	Hardin		50
	Medina		
	Presidio		
	Lavaca	´	
			400
	DeWitt		
Norias	Willacy		
Normangee	Leon	375	675
Normanna	${ m Bee}$	273	175
Norris	Val Verde	905	
	Washington		
North Ft. Worth	Tarrant	533	
North Houston	Harris	51	
North Jefferson	Marion	208	
North Pleasanton	Atascosa	373	
	Fayette		
North Rohy	Fisher		
Northrup	Lee	480	66
North Zulch	Madison	356	250
NOTTH ZUICH	mauisui	000	200

Place.	County.	Elevation	Population.
Norvall	Cherokee	. 273	_ op a2aox
	Harrison		
	McLennan		
Norwood	Runnels	. 1,716	• • • • •
	Wharton		40
Novice	.Coleman	. 194	275
Novi Court	.Coleman	. 2,028	-
Noyl Spur	El Paso	1,446	• • • • •
Nuio	.El Paso	. 3,567	
Nursery	. Victoria	. 134	177
Oak Cliff	. Dallas	. 450	
	.Bowie		50
	.Travis		116
	Live Oak		431
	Leon		906
	Dallas		
	.Uvalde		
			150
	Ochiltree		450
	San Patricio		25
Odio-	Ector	2,890	400
Odlaw	Kinney	. 1,102	• . • • • •
O'Donnell	.Lynn	. 3,000	
Ogle	Lampasas	. 1,421	25
	.Coryell		283
Ohio	.Cameron	. 45	
Oil City	.Nacogdoches	. 224	
Oklaunion	Wilbarger	. 1,227	75
	.Brazoria		
Olden	Eastland	. 1,557	
Olive	.Hardin	. 105	383
Olmito	.Cameron	. 29	
	. Maverick		
Olney	Young	. 1,184	1,095
Olton	.Lamb	. 3,615	150
Olyphant	.Baylor		
	.Morris	. 399	750
Omega	.Gregg	. 229	60
Onalaska	.Polk	. 201	125
	Ellis		
	Oldham		
ORANGE	Orange	. 10	5,527
Orchard	Fort Bend	129	200
Orchard Park	.Harrison	. 260	200
Oro City	Upshur	. 200	
Orione	.Stonewall	. 1,809	25
Ornhana Home	Navarro	. 484	
Orth	Young	. 1.282	• • • • •
			995
Osceola	Hill	. (10	325
Osman	Canada	. 1,554	
Ounte	Gonzales	342	200
Ovaio	.Taylor	. 2,026	500
Overton	.Rusk	507	675
Owego	.Pecos	2,377	• • • • •
Owens	.Brown	. 1,467	
Oxford	Llano	. 1,333	
Oyster Creek	. Brazoria	. 38	
Ozona	.Crockett	. 2,500	427

Place.	County.	Elevation.	Population.
	•Cottle		1.350
Pagoda	·Trinity	290	1,000
Paige	Bastrop	552	467
Paint Bock	·Concho	. 1.640	800
Paisano	•Presidio	5.078	148
	-Matagorda		1,389
PALESTINE	·Anderson	495	11,413*
Palm	·Zavalla	. 587	
Palmer	Ellis		605
Paloma	Mayerick	817	
PALO PINTO	·Palo Pinto	. 1,000	
	Gray		300
	·Wilson		
PANHANDLE	.Carson	3.451	521
Papalote	•Bee	. 89	134
Paradise	.Wise	754	500
	Nolan		
	·Cherokee		
	.Johnson		64
	•Wise		200
PARIS	Lamar	. 565	12,081*
	.Parmer		/
	.Kerr		
Parsons			
Parvin	Denton	. 420	44
Pasadena	·Harris	35	75
Patton	Galveston	. 13	
	Lamar		105
	Henderson		
	.Kinney		• • • • •
Paxton			60
	Stonewall		500
Pearland	Brazoria	. 56	136
PEARSALL	•Frio	. 646	1,799
	Delta		625
PECOS	.Reeves	. 2,580	1,856
	Liberty		25
Pena	.Duval	. 550	
Pendell	.Bosque	. 600	
Pendleton	Bell		210
Penick			• • • • •
	.Polk		
	Dallam		
Perrin			
	Falls		214
Personville			103
	.Webb		
	Clay		1,200
	Milam		• • • • • •
	.Bee		100
Petty			375
Peveto	Orange	$\frac{21}{500}$	• • • • • • • • • • • • • • • • • • • •
Pflugerville	Travis	. 706	575
	. Matagorda		• • • • • •
	.Walker		67
Phillips	.Montgomery	. 392	
Pickens	Henderson	. 430	• • • • • •
Pickton	Hopkins	. 536	200

777 - 4 -	a		
Place.	County.		Population.
Piedmont			• • • • • •
Pierce	.Wharton	. 109	65
Pierson	Gonzales	. 323	1 971
Pilot Point	Denton	. 674	1,371
Pine	.Camp	390	60
Pine Island	Angelina	. 182	•••••
Pine Island	Jefferson	. 36	25
Pineland	Montgomorr	. 267	100
Pinlery	Montgomery Navarro	250	
Pinkston	Upshur	446	50
Pinnacie	Upsiur	430	• • • • •
Pinto	.Kinney	1,059	73
	Eastland		
	.Colorado		72
PITTSBURG	Camp		1,916
Placedo	.Victoria		
	.McCulloch		50
	Yoakum		125
	.Hale		2,829
	.Collin		1,258
Plantersville	.Grimes	. 325	207
Plasterco	Fisher	. 1,787	
Plateau	.Culberson	. 3,936	25
Pleasanton	.Atascosa		420
Pledger	.Matagorda	. 68	150
Plemons	.Hutchinson		100
Plover	.Tarrant	. 710	
Plum	.Fayette	. 309	182
Pocahontas	.Montgomery	. 183	
Podo	. Matagorda	. 61	
	.Angelina		
Poesta	.Bee	. 246	
Point	Rains	523	325
Point Isabel	.Cameron	. 8	249
Pollok	.Angelina	. 316	200
Polvo	.El Paso	. 3,653	
Polvo			
	.Denton		250
Ponetta	.Johnson	. 753	
Ponta	.Cherokee	. 282	175
Porfa	. Hamilton	. 1,283	
	Jefferson		7,663
	.Galveston		83
Porter	.Lubbock	. 3,196	
	.San Patricio		182
PORT LAVACA	.Calhoun	. 22	1,699
Port O'Connor	.Calhoun	. 3	250
Posey	.Lubbock		
POSTCITY	.Garza	. 2,543	350
Poth	.Wilson	401	175
Potomac	.Polk	. 223	
	.Grayson	, 761	313
Powderly	.Lamar	. 464	63
Powell	.Navarro	. 376	248
Powers	.McLennan	. 485	
Poynor	.Henderson	. 402	
	.Calhoun	. 12	
Prairie	.Harris	. 87	

Place.	County.	Elevation.	Population.
Prairie View	. Waller	. 250	100
Presidio del Norte	.Presidio		
	Grayson		
	Angelina		
	Cherokee		
	Hidalgo		
Primm	Fayette	31.2	25
Primrose	Tarrant	773	
	McMullen		
	Collin		450
	.Upshur		250
Prohat	Potter	. 3,408	200
	Comanche		325
Progner	Collin	. 647	500
	Angelina		
	Robertson		
			• • • • •
	Marion		• • • • •
Pueblo	Callahan	. 1,440	
Pulliam	. Tom Green	. 1,909	• • • • •
	Zavalla		• • • • •
	Potter		• • • • •
	.Val Verde		
	. Navarro		220
	.Callahan		450
	. Ward		150
Pyron	.Scurry	. 2,316	25
QUANAH	.Hardeman	. 1.568	3,172
	. Washington		62
	.Presidio		
Queen City	. Cass	349	388
Quihi	.Medina	. 856	
Quinlan	Hunt	. 513	537
	.Jasper		
QUITMAN	. Wood	590	475
Quito	.Ward		16
4		,	
Rabbs	.Lavaca	. 248	
Radium	.Jones	. 1,692	
Ragland	Lamar	. 485	
Raisin	. Victoria	. 109	120
Ralph	.Randall	. 3,615	25
Ramsdell	.Wheeler		100
Ramsey	.Bastrop	. 220	
Randolph	Fannin	. 665	221
Randon	Fort Bend	. 112	• • • • •
Ranger	Eastland	. 1,429	586
Rankin	Upton	. 2,494	
Ransom	San Augustine	. 457	
Ratcliff	.Houston	. 338	500
Ravenna	Fannin	. 572	280
Rav	Grayson	796	200
Rayhurn	Liberty	. 157	80
	Leon		38
	.Cameron		300
Raymondvine	Colorado		900
Rayville	Parker		
Raywood	Liberty		$\begin{array}{c} 122 \\ 122 \end{array}$
100, WOOU			144

•			
Place.	County.	Elevation.	Population.
Reagan	Falls	374	428
Reagor Springs	Ellis	493	
Realitos	Duval	464	84
Rebecca	San Augustine	334	
Redfield	Nacogdoches	388	
Redlawn	Cherokee	369	
	Ellis		210
	Bastrop		300
			260
	Bowie		107
	Caldwell		
	Cherokee		25
REFUGIO			609
	Hartley		
	Dallas		87
	Cherokee		25
Rendham			• • • • •
	Collin		161
	Lamar		
	Cameron \dots		
	. Nueces		
Reynolds	Shackelford	1,909	
Rhome	Wise	934	486
	Nueces		25
	Harris		
	Navarro		325
	Grimes		225
	Dallas		400
Richland			
Richland Springs	San Saba	1.377	475
RICHMOND	Fort Bend	104	1,371
	Brown		
Ridgeway	Hopkins		110
Riesel	McLennan		575
	Montague	890	500
	El Paso		900
	Cameron	$\begin{array}{c} 3,402 \\ 21 \end{array}$	• • • • •
	Johnson		0.75
	Titus	380	375
Riging Ston	Eastland		54
Ritchie			640
	McLennan	708	
Diverside	Waller		*****
Discontant	Walker	169	128:
	Reeves	2,712	* * * * 2 2 2
Riviera		41	250
Roanoke	Denton	648	364
Roaring Springs		2,520	
	Bexar	815	• • • • •
	Leon	527	
	Hunt	495	• • • • •
	Nueces	40	275
Robtin	Hamilton	1,095	* * * * * * * * * * * * * * * * * * * *
	Fisher	1,800	712
Rochelle		1,770	275
	Haskell	1,592	375
	Parker	892	860
	Coleman	1,947	• • • • •
Rockdale	Milam	462	2,073
Rock Island	Colorado	251	367

Place.	County.	Elevation.	Population.
Rockland			305
Rockledge	Donley	. 3,117	
ROCKPORT	Aransas		1,382
	Edwards		
	Rockwall		1,136
Rodgers	.Upshur	. 539	• • • • • • •
	Jasper		200
Roll Over	Bell	$\begin{array}{ccc} & 62 \\ & 13 \end{array}$	1,275
	Hartley		25
Rona	Val Verde		μυ •••••
Rosanky	Bastrop		117
	Nolan		1.400
	Falls		1.472
	Jefferson		25
Rosenberg	Fort Bend	. 106	1,198
Rosenfeld	Brewster	. 3,660	
Rosharon	Brazoria	. 55	• • • • •
	McLennan		60
Rosser	Kaufman	. 396	128
Rossyln	Harris	. 106	
Rotan	Fisher	. 579	1,126
Round Mountain	Blanco	. 1,255	158
Round Rock	Williamson	$\frac{709}{234}$	1,138
Powe	Hockley	. 3,334 . 2,654	• • • • •
	Runnels		525
	Dallas		108
Royal	Potter	. 3,548	100
Roxton	Lamar	506	750
Royse City	Rockwall	. 554	1,210
Royston	Fisher	. 1,920	200
Ruby	Karnes	. 316	
Rudolph	Willacy	. 28	
Rugby	Red River		
Rugeley			
	Presidio		001
	Haskell		$\begin{array}{c} 891 \\ 32 \end{array}$
	Karnes		1.100
	Cherokee		1,558
	Motley		1,000
	Angelina		
	Williamson		21
Ryan	Presidio	4,750	
Rye	Liberty	. 123	
Rylie	Dallas	. 463	. 17
	.Uvalde		1,640
Sabine	Jefferson	17	673
	San Augustine		01
	Dallas		$\begin{array}{c} 81 \\ 300 \end{array}$
	Burnet		242
Sager	Haskell	. 1,621	242
Sagerton	. Haskell	1.641	400
Saginaw	Tarrant	. 724	83
St. L'dward's College.	Travis	. 600	• • • • • •

T. 1	~		. Davidation
Place.	County.	Elevation.	Population.
St. Francis	Potter	3,581	822
St. JO	. Montague	. 1,146	82
Salesvine	· Palo Pinto	. 1,018	$2\overset{32}{20}$
Sam Fordres	·Hopkins	. 434	$\begin{array}{c} 220 \\ 125 \end{array}$
Sample	·Hidalgo	. 291	25
	.Tom Green		10,321
	Bexar		115,065*
	San Augustine		1,204
San Benito			925
	.Presidio		
	.Terrell		450
Sand Hills			• • • • •
		312	1,897
	Ellis	•	
Sandstone Spur		7 713	
Sandune	Liberty		
	Gonzales		• • • • •
Sandy Point	.Brazoria	. 58	189
San Elizario	El Paso	. 3.628	834
Sanger	Denton	. 666	950
San Jose	Bexar	635	
San Leon	Galveston	. 14	125
SAN MARCOS	Hays	581	4,071
San Martine	Reeves	3.714	
SAN SABA	San Saha	1.705	1,200
San Saba Camp	San Saba	. 1.687	• • • • •
Santa Anna	Coleman	. 1.743	1,453
Santa Maria	$\mathtt{Cameron}$. 58	120
Santo	Palo Pinto	816	500
Saratoga	Hardin	. 86	550
Sarber	Marion	. 313	
Sardis	Ellis	. 589	
Sarita	Willacy	3.8	
Saron	Trinity	. 285	
Sartartia	Fort Bend	. 82	
Saspamco	Wilson	. 482	125
Satsuma	Harris		• • • • •
Satuit	.McCulloch	. 1,692	• • • • • •
Saunders	.Travis	770	
Savoy	Fannin	. 664	328
Sayers	.Bexar	. 415	35
Schenck	Grayson	760	• • • • • •
Schertz	Guadalupe	713	200
Schofield	Hill	. 656	* * * * * *
Schulenburg	Fayette	344	1,091
Schwertner	Williamson	387	• • • • • •
Scotland	Archer	. 991	175
Scofield	Burleson	230	• • • • • •
Scottsville	Harrison	390	49
Scroggins	Kaufman	. 359	$\begin{array}{c} 35 \\ 200 \end{array}$
Scurry	Kaufman Harris	. 408	$\begin{array}{c} 200 \\ 250 \end{array}$
Seaurook	Calhoun		250 50
Seadrift	Dollag		อบ
Seagu	Dallas	. 451	1.225
Sealy	. Cameron	203 36	•
	· · · · · · · · · · · · · · · · · · ·	. 00	• • • • •
20—Min.			

Place.	County.		Population
Seco	. Medina	1,066	
Security	Montgomery	. 160	
Sedwick	Shackelford	1.365	
SEGUIN	Guadalupe	. 553	3,116
Selby	McLennan	441	
Sellman			
Seminary Hill			
Seneca			
Sequoyah			
	Trinity		
	Lee		83
	Harris		
	Brown		
Seymour			3,500
	Presidio		•,500
Shamrock	Wheeler	2,281	725
Shanghai	Wharton	109	120
	Hardin		
	Nolan		• • • • •
	Bexar		
	Angelina		• • • • •
	Harris		
			25
	San Jacinto	143	278
SHERMAN			13,157*
	Grayson		
	Irion		339
Sniner	Lavaca		1,096
Shiro	Grimes	373	325
Shockley	Hamilton	1,043	
	Val Verde		
	El Paso		150
	Shelby	360	
Silenus		597	
	Hardin	81	300
Silver Lake	Van Zandt	383	29
Silverton	Briscoe		525
	Coleman	2,034	250
Simms	Bowie	270	47
Simonds	Dallas	432	16
Simonton		117	35
	Matagorda	22	
	Grimes	339	60
SINTON	San Patricio	49	975
Sipe Springs	Comanche	1,409	377
Skeen	Lynn	2,975	
Skidmore	Bee	159	450
	Lubbock	3,040	
Slayden	Gonzales	329	104
Small	El Paso	4,116	
Smiley	Gonzales	316	400
	Upshur	300	
Smithfield	Tarrant	639	137
	Bastrop	324	3,167
Smithwick	Burnet	727	47
SNYDER	Scurry	2,310	$2.5\overline{14}$
Solms	Comal	627	37
	Burleson	250	950
Sommer	Cottle	1.680	• • • • • •

Place.	County.	Elevation.	Fopulation.
Sonora	.Sutton	. 2,020	783
	Potter	*	
	.Hardin		800
Southard			- · · -
	•		90
South Bosque			89
Southland			• • • • • • •
Southmayd	.Grayson		132
Southern Pacific Jct.	.Bexar		
Sparks	.Bell	. 470	• • • • •
	.Bell		48
Sperry	.Grayson	. 760	
Spies	Fannin	. 547	
Spindle Top	.Jefferson	. 30	
Spofford	.Kinney	. 1,008	79
Spohn	.Nueces	. 48	
Spring	.Harris	. 126	550
Springdale	.Cass	. 239	68
Springtown	Parker	900	
Sprinkle	Travis	. 601	50
Spur	.Dickens	. 2,274	1,360
Stafford	Fort Bend	. 82	57
Stalls	Marion	. 220	
Stamford	Jones	. 1,603	3,902
Standart	Kinnev	1.085	40
Stanton	Martin	. 2,654	1,100
Stateline	El Paso	. 2,892	
Stauton	Cherokee	712	
Stella	Harris	52	
Stenhenson	Cass	. 475	
STEPHENVILLE	Erath	. 1,283	2,561
Starling City	Sterling	. 2,295	532
		. 630	28
Stevens	Sherman	. 3,535	
			28
Stockard	Henderson Wilson Shelby Washington	. 421	22
Stockdale	Whish	. 430	725
Stockman	Snelby	. 325	27
			19
Stoneburg	Montague	$\begin{array}{ccc} . & 934 \\ . & 250 \end{array}$	173
STONE CITY	DIAZUS	. 400	42
Stonenam	Grimes	. 22	100
Stowell	Uandin	. 44	176
Strain	Hardin Harris	. 68	• • • • •
Strang	Shormon	. 34	· · · · · · · · · · · · · · · · · · ·
STRATFORD	Sherman	. 3,690 . 992	$\begin{array}{c} 510 \\ 612 \end{array}$
Strawn	Thougtons		300
Streetman	Freestone	. 4.489	900
Strobel	Polk	205	$1\overline{25}$
Stryker	Lavaca	222	210
Sublime	Burnet	1,135	
Sudduth	Cameron	. 1,135	200
Sugarland	Fort Bend	. 84	200
Sugar Waller	. Matagorda	. 52	400
Suggs	Irion	. 2.469	
Sulnhur	Bowie	. 237	
SIILPHIIR SPRINGS	Hopkins	. 494	5.151
EONI TOTE DETERMOS			-,201

***	0	T01 42	Danielation
Place.	County.	Elevation.	Population.
Summerfield	.Castro	. 3,926	• • • • •
Summit	Burnet	. 1,491	
Summit	.Milam	. 514	· · · · · <u>· · ·</u>
Sunny Lane	.Burnet	. 1,169	15
Sunset	.Montague	. 992	632
Sutherland Springs .	.Wilson	. 423	550
Sutton	.Robertson	. 370	
Swanson	.Harris	. 189	
Swastika	.Hale	. 3,460	
Swearingen	.Cottle	. 1.755	
Sweden	.Duval	. 444	
	.Brazoria		
	.Lavaca		274
SWEETWATER	.Nolan	2:164	$4.\overline{176}$
	Fort Bend		
Sylvactor	Fisher	. 1.838	300
Byttester	.r.suci	. 1,000	900
Taber	.Brewster	. 3,860	
TAHOKA			575
	Titus		
	.Harrison		25
Tallys	.Coleman	. 1,950	$4\overline{25}$
Tanglawaad	Lee	. 476	97
	Oldham		$19\overset{5}{2}$
			425
	Rusk		
	Fort Bend		
	.Williamson		5,314
	.Freestone		3,288
	.Nolan		
	.Limestone		382
	· Victoria		200
	.Bell		12,704*
Tenaha			491
	.Coke		100
Terlingua	.Brewster	3,272	
Terrell	.Kaufman	. 530	7,050
Terry	Orange	. 19	73
Tesnus	.Brewster		
Texarkana	.Bowie	. 295	11,722*
Texas City Jct	.Galveston	. 8	
Texla	.Orange	. 31	50
Texline	Dallam	4.694	350
Texola	.Wheeler	. 2,148	
Thatcher	.Montague	. 442	
Thomaston	DeWitt	. 160	347
Thompsons	.Fort Bend	. 68	104
Thorndale	.Milam	. 460	1,100
Thornton			678
Throckmorton			500
	Erath		3,000
	.Terrell		
	.Matagorda		
	Eastland		
	Montgomery		80
	.Shelby		1.528
	Bexar		1,040
	.Cameron		
Tioga			950
1108a	.Grayson	000	<i>9</i> 0 0

71	O	Tilenation	Donulation
Place.	County.		Population.
Titley	Brewster		• • • • •
Tokio	McLennan		• • • • •
Tolan	Taylor	1,013	455
Tolar	.Hood	1,010	135
Tolbert	. Wildarger	1,292	275
Tomball	Harris	212	288
Tom Bean	Grayson	816	
Tomlin	Bastrop	534	43
Tona	Kauiman	519	
Torbert	El Paso	4,346	• • • • •
Torcer	El Paso	4,272	• • • • • •
Tornillo	El Paso	3,583	• • • • • •
Toronto	Marian	4,730	• • • • •
Torrans	Tions	395 1.025	39
Tow	III Dogo	3,720	0.9
Towne	Page	2,909	1,052
Toyah	Chalber		
Trabue	.Shelby		148
Travis	Nacardoches		160
Trent	Taylor		400
Trenton	Pannin	754	550
Trice	Trinity	279	
Trickham	Coleman	1,400	• • • • •
Trinidad	Henderson	304	75
Trinity	Kaufman	357	
Trinity	Trinity	226	856
Trinity Mills	Dallas	559	64
Troupe	Smith	467	1,126
Troy	Bell	680	300
Trueloves	.Johnson	734	
Trumbull	Ellis	463	98
Tubbe	.Nacogdoches	185	
Tuggle	.Burnet	960	
Tulane	Orange	14	
TULIA			1,216
Tumlinson			
Tuna			
Turcotte	. Willacy	38	
Turney	.Cherokee	409	100
Turpentine	Jasper		25
Tuscola	.Taylor		49
Tuxedo	Jones	1,662	200
Twist	Hartley	3,969	
Twohig	Lasane	457	400
TyeTYLER	. Taylor	1,795 $$ 521	11.393*
rinen	.smith	521	11,000
Ulmer	Grimes	287	
Umbarger			100
Upton			59
Urbana			
Uvalde			3,998
			•
Vair			
Valentine			175
Valera			225
Valley Junction	.Robertson	285	

Place.	County.	Elevation.	Population.
Valley Mills	CountyBosque	. 630	708
Valley View	.Cooke	. 714	575
Van Alstyne	.Grayson	. 791	1,411
	.Culberson		175
	.Bexar		60
	.Matagorda		200
	.Tarrant		
	Oldham		275
	San Augustine		
	.Harris		• • • • • • •
Venus	.Johnson	. 658	405
Verhelle	.DeWitt		
VERNON			3,195
Viaduct	.Val Verde	. 1,550	0.470
VICTORIA	.Victoria		3,673
Vida	.Tyler		
Viaor	Orange	. 26	25
View	.Hardin	. 1,958 . 102	316
	.Nacogdoches		
Vinovord	Jack	. 934	250
	.El Paso		25
	.Nueces		20
Virginia Point	.Galveston	. 5	• • • • •
Victo	.Hamilton	2,381	• • • • • •
	.Jefferson		• • • • • • •
	.Bexar		
	.Bexar		42
	.Hardin		100
Voth			$\overline{125}$
	.McLennan		28,707*
	. Matagorda		60
	. Gonzales		694
Waldo			51
	. Waller		383
	·Harris		
	·Austin		675
	· Bosque		1,340
Walton	·Clay	. 861	• • • • •
Wanted	· Danas · · · · · · · · · · · · · · · · · · ·	. 433	
Ware	Hood		80
	· Midland		• • • • •
	.Kendall		$\begin{array}{c} \dots \dots \\ 92 \end{array}$
	.Tyler		833
	.San Augustine		000
	.Brewster		
	Armstrong		150
	.Zavalla		
	.Harrison		207
Wastella	. Nolan	. 2.396	75
Watauga	.Tarrant	. 606	58
Waterman	.Shelby	. 276	476
	.Tom Green		132
	.Terrell		
Watson	.Comanche	. 1,684	
Watters	.Travis	707	68

Place.	County.	Elevation.	Population.
Waukegan	. Montgomery	. 188	• • • • • • •
Waverly	.Walker	. 365	232
WAYAHACHIE	Ellis	530	6,205
WEATHERRORD	Parker	. 1.000	5,074
Weaver	Hopkins	. 435	79
Wohh	Tarrant	. 934	
Wehh	Webb	. 647	
Webbarrillo	Travis	400	
Webster	Harris	. 27	33
Webster	.Colorado	408	906
Weinert	Haskell	. 1,531	500
	Williamson	· ·	175
Weir	Transfer		139
Weldon	Houston	. 1,399	$\frac{139}{27}$
Wellare	Kendall	. 1,399	
Wellborn	Brazos	. 318	150
Wellington	.Collingsworth	. 1,980	
Wells	Cherokee	. 334	162
Wells	. Jack	. 1,083	
Welview	.Coleman	. 1,874	• • • • • •
Wendell	.Jeff Davis	4,221	
West	.McLennan	. 648	1,645
West Brook	. Mitchell	2,127	375
Westbury	Jefferson	. 40	
Westcott	San Jacinto	169	
Westfield	Harris	. 114	48
Woothoff	DeWitt	260	425
Westion	Polk	220	
Westover	Baylor	1.286	
Westover	Favette		289
West Point	rayette	. 290 . 8	209
West Pt. Artnur	Jefferson	816	16
Wetmore	Bexar	111	
WHARTON	Wharton	. 1000	1,505
Wheatland	Dallas	1,290	. 87
Wheeler	Wheeler	. 2,300	200
	Wilbarger		• • • • •
	San Augustine	192	
White Deer	Carson	3,338	50
Whitehouse	Smith	483	150
Whiteland	McCulloch	1,780	• • • • • • •
White Oak	Hopkins	393	
Whitesboro	Grayson	783	1,219
Whites Ranch	Chambers	. 8	
	Grayson		156
	Hill		4,678
	Live Oak		
WICHITA FALLS	Wichita	946	10,760*
Wild Horse	Wichita	3,844	
Wildorado	Oldham	3,883	200
Wilag	Stephens	1,155	
Wilkio	Burnet	1.281	
Wilking	Upshur		
Willard	Trinity	297	
Willis	Montgomery	381	832
Willis			
Wills Daint	Gregg	532	1,398
Wills Point	Van Zandt		200
Wilmer	Dallas	472	
	Parmer	4,123	
Wilson	Lynn	3,073	

Place.	County.	Elevation.	Population.
Winchell	.Brown	. 1.329	300
	.Fayette		375
Windom	Angelina	. 178	
Windom	Fannin	694	312
	.Cooke		• • • • •
	Titus		625
	.Chambers		25
Winnshoro	.Wood		1.741
	Smith		550
	Runnels		1.347
	Bexar		1,011
	.Nacogdoches		• • • • •
	. Henderson		
	.Hunt		1.402
	Grimes		· .
			113
	.Cooke		
	.Harrison		104
woodsporo	Refugio	. 49	325
	.Tyler		650
	.LaSalle	. 508	20
	.Tom Green		• • • • • • • • • • • • • • • • • • • •
Wortham	.Freestone	. 478	899
Wurtzbaugh	.Harrison	. 202	* *** * * * * * * * * * * * * * * * * *
	Ellis		44
Wylie	.Collin	. 557	620
Yarboro	.Grimes	416	83
Yarnall	.Carson	3,478	
	.Lamb		
	.DeWitt		4.657
Yorktown	.DeWitt	255	1.180
	.El Paso		1.562
Yturria	.Cameron	. 40	
Yucca	.Uvalde	368	
			• • • • •
	.Zavalla		
Zavalla	.Angelina	. 228	175
Zella	.McMullen	. 382	
	.Brown		350
	. Victoria		
	Randall		
	Madison		100

CHAPTER VIII.

LOCATION AND ELEVATION OF MOUNTAIN RANGES, PEAKS AND HILLS.

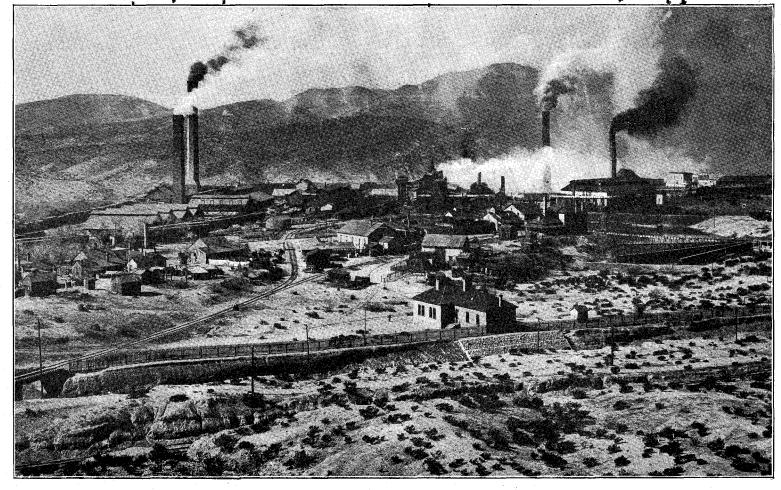
In the region west of the Pecos river there are 78 peaks above 5,000 feet in elevation; 35 peaks above 6,000 feet, 10 peaks above 7,000 feet, and 2 above 8,000 feet. In Jeff Davis county (area 2,263 square miles) there are 14 peaks above 5,000 feet in elevation.

The highest point in the state appears to be El Capitan Peak, Guadalupe Mountains, Culberson county, 8,690 feet; Baldy Peak, Jeff Davis county, being second with 8,382 feet.

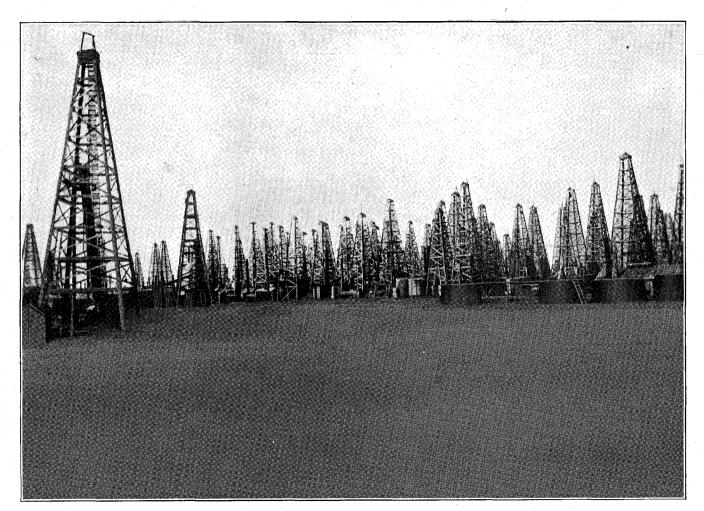
Place.	County.	Elevation.
Adobe Walls	.Brewster	3,313
Aguja Peak		
Aguja Peak, Little		
Alto Relex		
Anacacho Mountains		
Anderson Mountain	.Coryell	1,250
Antelope Hill	.Coryell	1,000
Antelope Hills		
Anthony's Nose		
Agabalt Marrain		
Asphalt Mountain	. Uvaide	1,300
Babyhead Mountain	Llano	1,521
Bachelor Peak	Llano	1.350
Backbone Mountain	Burnet	1,200
Bald Knob		
Bald Mountain	. Burnet	1,239
Bald Mountain	.Stephens	1,450
Bald Mountain	.Travis	1,250
Baldy Mountain	.Burnet	\dots 1,325
Baldy Peak		
Barber Mountain	.Palo Pinto	1,050
Barilla Spring	Reeves and Pecos	3,900
Barilla Mountains		
Baringer Hill		
Barnard Knob		
Batesville Hill	Zavalla	964
Baylor Mountains	.Culberson	5,560
Bead Mountain	Coleman	2,000
Bee Mountain	Bosque	$ \begin{array}{ccc} & 1,100 \\ & 3,376 \end{array} $
Bee Mountain	Provides	3,376
Bell Mountain		
Berry Knob		
Big Aguja Mountain		
Big Mountain		
Bill Black Peak	San Saha	1.750
Black Hill		

Place.	County.	Elevation.
Black Hills		5,500
Black Knob	Promoto-	2,617
Black Knop	Drewster	4,017
Black Mesa	Brewster	4,000
Black Mountain	Brewster	4,290
Black Mountain		
Black Mountain		
Blue Mound		
Blue Mound		
Blue Mountain		
Blue Mountains	Mason	2,217
Blue Mountain	Uvalde	1,277
Blue Range	Brewster	5,055
Bodie Peak	Mason	1,600
Boracho Peak	Jeff Davis	5,661
Boultinghouse Mountain	Burnet	1,350
Brady Mountains		
Brady Mountains	McCulloch	2,000
Bread Tray Mountain	Corvell	750
Browns Mountain		
Brushy Knob		
Brushy Knob		
Brushy Knob		
Brushy Mound	Cooke and Gravson	800
Brushy Mountain	Erath	1.250
Buck Mountain		
Buffalo Peak	Rianco	1.650
Bullhead Mountain	Edwards	2,050
Bunker Hill		
Bunker Hill		
Burkett Mound		
Burro Mesa		
Burton Knob		
Buzzard Roost		
Duzzard Roost	Burnet	1,400
Caddo Peak	Tohnson	1,000
Caldwell Knob	Pagtron	575
Calf Hill	Poven	760
Camp San Saba, San Saba river	Mogan	1,687
Cap Mountain		
Capote Peak	Dragidia	6 105
Casket Mountain	Dell Davis	6,180
Castle Hill	Temporer	1,000
Castle Peak		
Castle Peak		
Cathedral Mountain		
Cedar Hill		
Cedar Knob		
Cedar Knob		
Cedar Mountain		
Cedar Mountain	Dusque	1,000
Cedar Mountain	Durnet	1,350
Cedar Mountain	Togtion d	1,950
Cedar Top Book		
Cedar Top Peak	Lampasas	1,500
Corro Castollan	Proventor	5,767
Cerro Castellan	Ti Dago	5.700
COLUMBIA DIGOLO	ш. 1 abu	0.(00

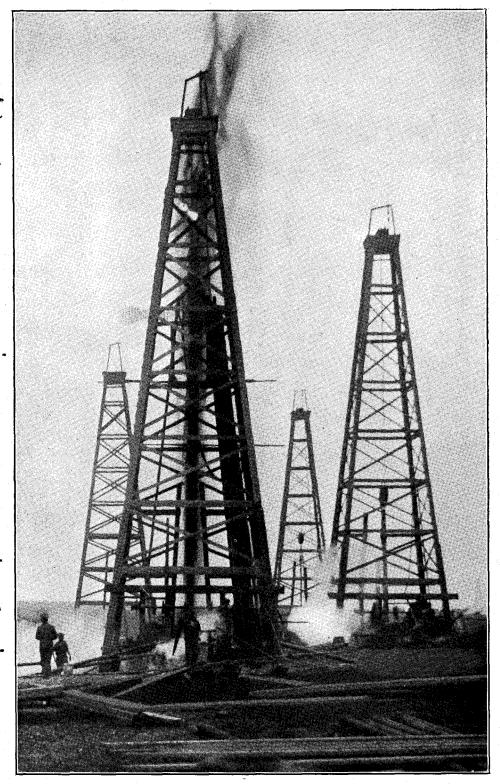
Place.	County.	Elevation.
Chalk Bluff	.Uvalde	1,350
Chalk Knob		
Chalk Mountain	.Erath	1,000
Chilicotal Mountain	.Brewster	4.104
Chimneys, The	. Brewster	2,900
Chinati Peak	. Presidio	7,730
Chispa Mountain	·Culberson	$\dots 5,215$
Christmas Mountains	.Brewster	5,735
Church Mountain	Nolan	$\dots 2.300$
Cienega Mountain	:Presidio	
Cienega Mountain	Brewster	6,550
Cigar Mountain	·Brewster	\dots 3,290
C. J. Mountain	Stephens	1,450
Cleveland Breaks	· Presidio	5,500
Cline Peak	Liano	1,393
Comanche Peak	· Uvalue	1,517
Concan	·Hood	1,200
Conception Mission	Down	1,252 590
Contrabando Mountain	Progrator	2,684
Coon Mountain	Brown	1.700
Corazones Peaks	Browstor	5,306
Croton Peak	Regueter	4,600
Crossville Peak	.Bell	1,150
Crown Mountain	. Brewster	7.186
Cuesta del Burro	.Presidio	5.750
Culebra Hill	Bexar	1,146
Cutoff Mountain	. Hamilton	1,250
Dalton Mountain	. Corvell	750
Dancer Peak	.Llano	1,686
Delaware Mountains	.Culberson	5.870
Devil Ridge (northern part)	.El Paso	5,550
Devils Courthouse Peak	.Tom Green	2,250
Dogie Mountain	.Brewster	3,700
Dome Peak		
Double Mountain		
Douglas Mountains	Bell	1,100
Dunman Mountain	.Llano	1,250
Dye Mounds	. Montague	1,236
Eagle Mountain	.El Paso	7,510
EL CAPITAN PEAK, GUADA-		
LUPE MOUNTAINS. HIGH-		
EST POINT IN STATE	Culberson	8.690
Elephant Mountain	.Brewster	6,200
Ellenburger Hills	San Saba	1.525
Elm Mountain	Kinney	1,449
Emory Peak	Brewster	7.835
Enchanted Rock	Llano	1,815
Evensville Peak	.Stephens	1,250
Finlay Mountains	El Paso	5,700
Flat Top Mountain	. Bosque	1,000
Flat Top Mountain	Eastland	1,650
Flat Top Peak		
Flat Top Peak		
Fossil Knobs		

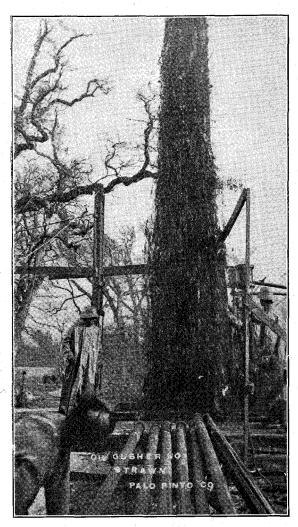

Place. Frenchman Hills Fresno Peak	County. Presidio	Elevation 5,250 5,131
Gettysburg Peak Goat Mountain Grapevine Hills Green Mountain Green Mountain Green Mountains Gunsight Mountain	Presidio Brewster Brewster Burnet Uvalde Shackelford Eastland	4,897 6,700 3,859 1,500 1,400 1,500 1,550
Hackett Peak Harkey Knobs Harriet Mountain Harris Peak Hayes Ridge Hayrick Mountain Hen Egg Mountain Henson Mountain Hog Mountains Hog Mountain Hog Mountain Hog Mountain Hog Mountain Hog Mountain Hor Spountain Horse Mountain Horse Mountain Horse Mountain Horse Mountain Horse Mountain Horse Mountain House Mountain Horse Mountain House Mountain House Hubert Ridge Hubert Ridge Hubert Mountains	San Saba Erath Palo Pinto Brewster Coke Brewster Coryell Brown Coryell Runnels Stephens Medina Hamilton Llano Llano El Paso Brewster	1,500 1,250 1,250 1,250 4,600 2,000 5,002 1,000 1,250 2,000 1,350 1,092 1,500 1,853 1,450 3,300 3,940
Hueco Tanks Indian Hills Indian Knob Indian Knoll Indian Mountain Indian Mountain Indian Mountain Indian Mountain Indian Mountain Indian Mountain Indianola Peak Inge Mountain Ivy Mountains	El Paso San Saba Parker Stephens Brown Burnet Comanche Edwards Brewster Uvalde	4,500 1,650 1,200 1,350 1,600 1,450 1,650 2,114 5,240 1,000
Jackson Knob Johnson Peak Kinchelo Peak Kit Mountain Kyle Mountain	Bosque Lampasas Brewster	1,250 1,433 3,803
Langford Mountain Las Moras Mountain Leon Mountain Lion Mountain Little Twin Sister Peaks Lockhart Mountain Lone Grove Lone Man Mountain Lone Woman Mountain	Coryell	850 1,667 3,000 1,275 1,250 1,438 999 1,450

Place.	County.	Elevation.
Lone Mountain	Brewster	4.132
Lone Mountain		
	Hamilton	
	Llano	
Lone Oak Mountain	Llano	1,850
Lone Tree	Travis	975
	Zavalla	
	Coryell	
Long Mountain	Llano	1,400
Tookout Mountain	McCulloch	1,500
Lopez Feaks	Irion	
Lost Mine Peak	Brewster	400
Lotman Hill	Bastrop	400
Ma Adama Paak	Palo Pinto	1.250
McCathrine Mountain	Shackelford	1,250
	Montague	
McMiller Mound	Bell	
McMilian Mountains	Eaction 4	1,100
McQuirt	Eastland	1,250
Magili Mountain	Llano	1,700
Major Peak	Jeff Davis	5,822
Maione Mountains	El Paso	5,050
Manere Mountain	Bell	1,150
Marble Peak	Culberson	5,185
Margaret Peak	Coke	2,300
Mariscal Mountain	Brewster	3,940
Marley Peaks	San Saba	1,550
Marshall's Bluff	Grayson	700
Maverick Mountain	Brewster	3,495
Miller Mountain	Bell	900
Mitre Peak	Jeff Davis	6,100
Monument Peak	Fisher	2,000
Mount Barker	Travis	800
Mount Bonnell	Travis	750
Mount Connor	Shackelford	1,750
Mount Franklin, north p	eak El Paso	$\dots 5.591$
South peak	El Paso	7,140
Mount Hudson	Gillespie	1,750
Mount Moro	Taylor	2,416
Mount Nebo	Gillespie	1,750
Mount Ord	Brewster	6,800
	Lampasas	
	Jeff Davis	
Mule Ear Peaks	Brewster	3,880
Musquiz Canvon	Jeff Davis	4.500
Nebo Mountain	Parker	1,000
Niggerhead Peak	Burnet	1,313
Niggerhead	Travis	. 1,300
	rt)Coke	
Nipple Peak	Coke	2,400
	Bosque	
	Cooke	
	Brewster	
		•
Oak Hills	Presidio	5,250
Obar Hill	Fayette	600
Obi Hill	Uvalde	1,150

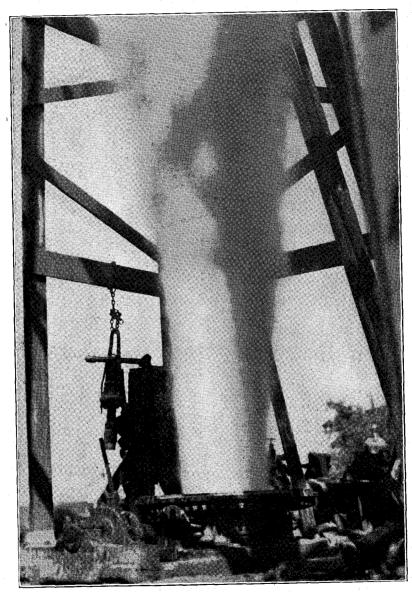

Place.	County.	Elevation.
Pack Saddle Mountain	Llano	1.664
Padrone Hill		
Paint Gap Hills		
Paisano Peak		
Peloncillo Peak	Kinney	1,000
Phantom Lake		
Phillips Rock		
Pike Peak		
Pilot Knob		
Dilot Knob	busque	1,000
Pilot Knob	Erath	1,400
Pilot Knob (east of McNeil)	Travis	900
Pilot Knob (south of Austin).		
Pinoak Mound		
Pinks Peak	Brewster	3,681
Pinto Mountain	Kinney	1,551
Point Peak	\dots Llano \dots	1,450
Pompey Mountains		
Post Mountain	Burnet	1,556
Postoak Ridge	Travis	
Potato Top Peak	Burnet	1,570
Potato Hill	Comanche	1,750
Potter's Peak		
Powelldale Mountains		
Puertacitas Mountains		
Pulliam Bluff	Brewster	6,921
Pummel Peak	Brewster	6.630
Pyramid Rock		
	•	
Quitman Mountains	El Paso	6,600
Dattleanaka Mountain	Do etlor 3	1 600
Rattlesnake Mountain		
Riley Mountain		
Robinson Peak	Coleman	2,000
Rock Hut	Brewster	
Round Head	Gillespie	
Round Hill	Shackelford	
Round Mountain	Montague	
Round Mountain		
Round Mountain	Travis	1,000
Round Mountain	Uvalde	1,077
Round Mountain	Blanco	1,600
Round Mountain	Comanche	1,750
Round Mountain	Corvell	1,000
Round Mountain (N. E. of Ea	ist-	
land)		1.350
Round Mountain (S. E. of Ea	nst-	
land)	Eastland	1,500
Round Mountain		
Round Mountain	IIvaldo	1.600
Rosillos Mountains		
Roys Peak		3,935
Royston Hill	Regitron	5,939
Russell Hill		
Trungell fill	Gouzaies	500
Salmon Peak	Kinney	1,940
Salt Mountain	Prown	
San Antonio Mountain	FI Dogo	
Ban Entonio Mountain	Li faso	7,020

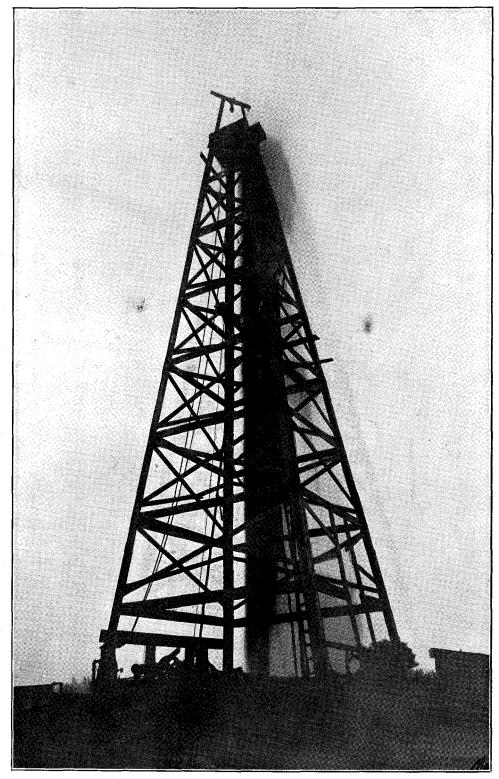
Place.	County.	Elevation.
	Zavalla	DICTAMOR.
Sand Mountain	Zavaila	868
Sandstone Mountain	Llano	1,460
Can Iogo Miggion	Llano	
San Jose Mission		
San Juan Mission	Bexar	542
San Saba Peak	Galaman	1,712
Santa Anna Mountains	Coleman	$\dots 2,000$
	Brewster	
Cabofor Hill	Jeff Davis	7,748
Coon Chrisge Mountain	Bastrop	575
Seep Springs Mountain	Edwards	2,280
Charleng IIII	Somervell and Bosque.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Shark Marrisin	····Uvalde	1,000
Sharp Mountain	Llano	1,63
Chall Mountain	El Paso	6,055
	Coryell	
	·····Travis	
Shin Oak Mountain	San Saba	1,925
	Uvalde	
Shovel Mountain	Blanco	1,500
	Brewster	
	El Paso	
	Brewster	
Sierra Larga	El Paso	9 196
Sierra Drieta	El Paso	3,126 $5,450$
Sierra Tineia Pinto	El Paso	5,500
	· · · · · Presidio · · · · · · · · ·	
Skeen Dook	Wise	1.350
	Burnet	
	Brewster	
	Presidio	
	Llano	
	Kendall	
	Coleman	
Spy Mountain	Stephens	1,250
Star Mountain	Brown	1.900
Star Mountain	Hamilton	1,600
Star Mountain	Jeff Davis	6,350
	Stephens	
Steamboat Mountain	Kimble	2,006
Study Butte	Brewster	2,835
Sue Peaks	Brewster	5.857
Sugar Loaf Mountain	Bosque	1,000
Sugar Loaf Mountain	Coryell	950
Sulphur Mountain	Uvalde	1,124
Summit of Iron Ore Knobs	Grayson	900
Taharnacla Mountain	El Paso	5,650
	Brewster	
	Eastland	
	Uvalde	
	El Paso	
	Bastrop	
Threemile Mountain	Culberson	
	Cooke	
	Jeff Davis	
	,	

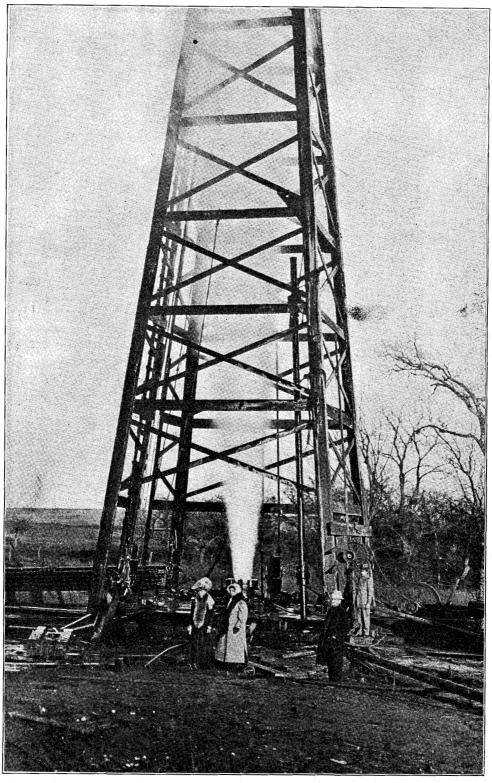

Place.	County.	Elevation.
Tod Mountain	. Mason	1,695
Tom Nunn Hill	.Uvalde	864
Town Mountain	Llano	1,285
Trap Mountain	. Brewster	4,135
Travis Peak	Travis	1.250
Tres Cuevas Mountain	.Brewster	3,635
Trigger Mountain	Mills	1,650
Triple Hill	. El Paso	5.400
Tule Mountain	.Brewster	3,83 3
Turkey Mountain	Kinney	1,805
Twin Buttes		
Twin Mountains	.Coryell	1,000
Twin Mountains (southern part).	.Coryell	1,250
Twin Mountains (north of Ste	;	•
phenville)	.Erath	1,250
Twin Mountains (N E of Ste	_	
phenville)	Erath	1,500
Twin Mountains	. Hamilton	1,250
Twin Mountains	. Presidio	6,650
Twin Sister Peaks	Lampasas	1,650
Tyler Bluff	.Cooke	1,000
Upper Juniper Spring (Chiso Mountains)	s . Brewster	5,000
Valley Spring	Llano	1,335
Van Horn Mountains	Culhorson	5,786
Victoria Peak	Culherson	6.432
VIOLOIIA I CAR	. Odiberson	0,102
Wagon Wheel Hill	.Uvalde	976
Walker Peak	Llano	1.551
Washout Mountain	Erath	1,250
Watch Mountain	Llano	1,620
Weymiller Butte	. Uvalde	1,000
Wilbern's Glen		
Wildhorse Mountain	. Brewster	3,505
Wylie Mountain	. Culberson	5,031
Willow Mountain	.Brewster	3.830
Wolf Mountain	. Palo Pinto	1,300
Wolf Mountain	Cooke	1,000
Yearling Head Mountain	.Llano	1,669
Yegua Knobs	Lee	800

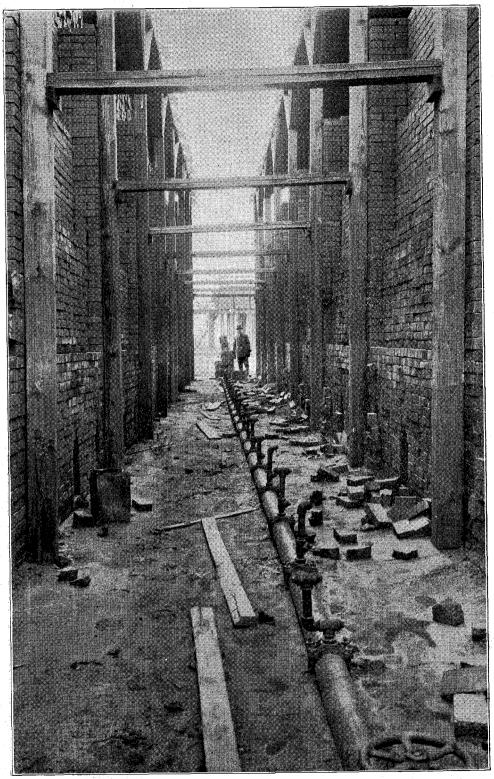

Plant of El Paso Smelting Works, El Paso

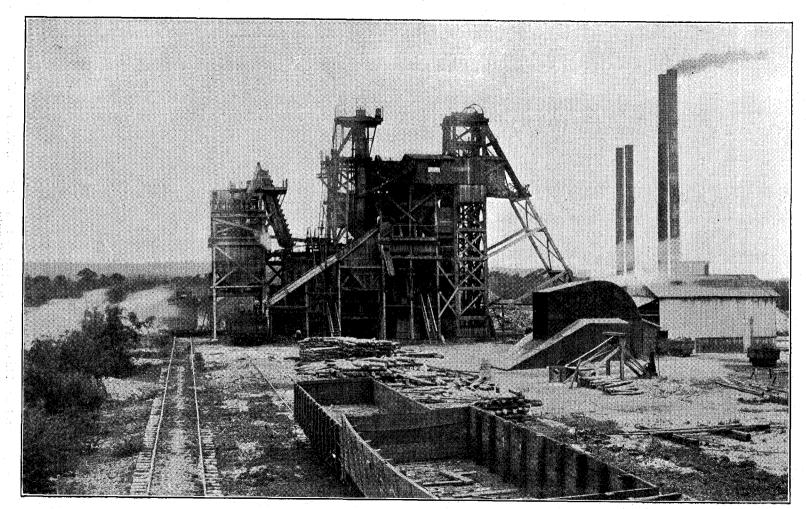
Oil Derricks-Spindle Top, near Beaumont, Jefferson County, Texas, 1901-1902

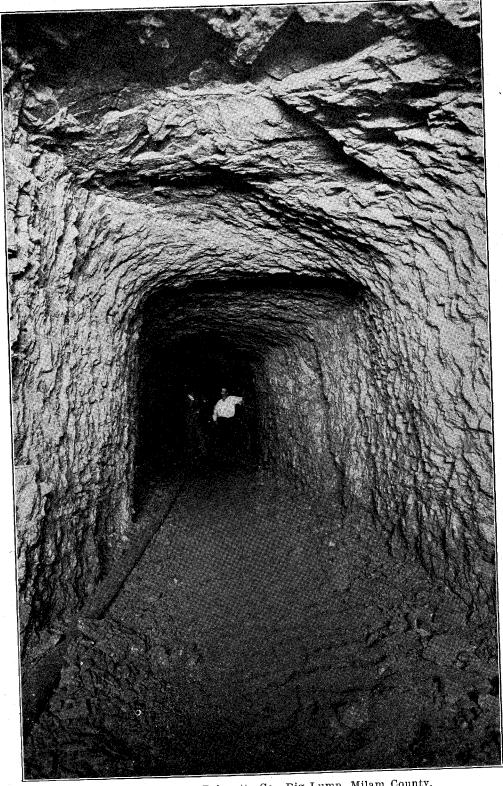

An Oil Gusher at Thrall, Williamson County, Texas

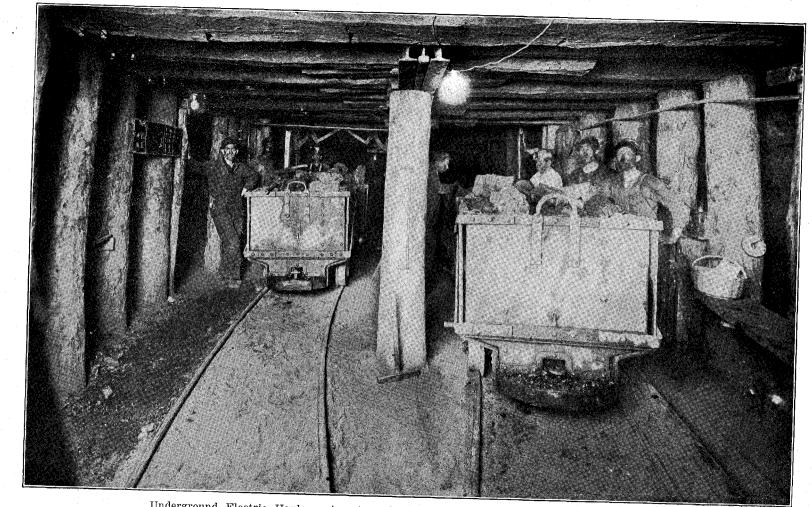

Oil Gusher near Strawn, Palo Pinto County

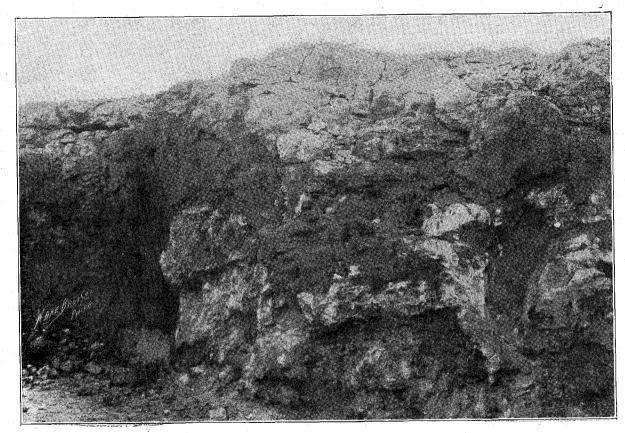

A Line of Fuel Oil Cars. Sour Lake, Hardin County

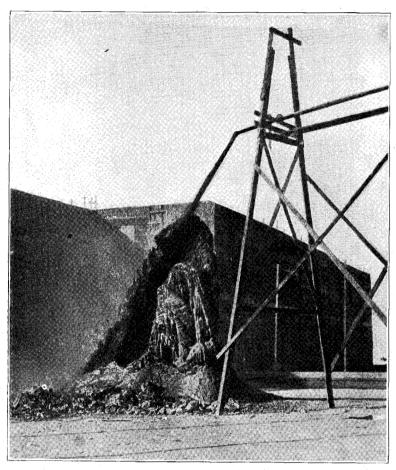

Natural Gas, White Point, San Patricio County, Opposite Corpus Christi

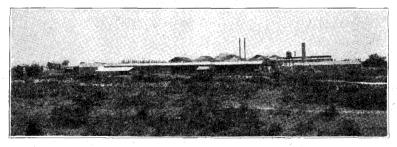

Gas Well, Little Giant Cil & Gas Co., Mexia Field, Limestone County-Oct., 1914


The Miller Gas Well, Petrolia, Clay County-Lone Star Gas Co.

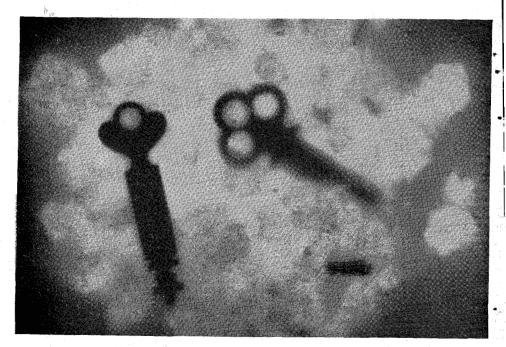

Natural Gas Line at Plant of Northwestern Brick Co., Wichita Falls, Wichita County.

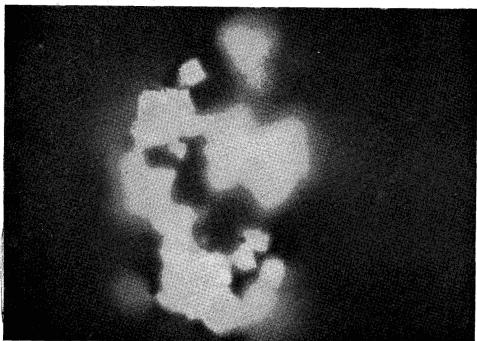

Olmos Coal Co., Eagle Pass, Maverick County-Washer Plant


American Lignite Briquette Co., Big Lump, Milam County. Tunnel in 10 ft. of Lignite—2,000 ft.

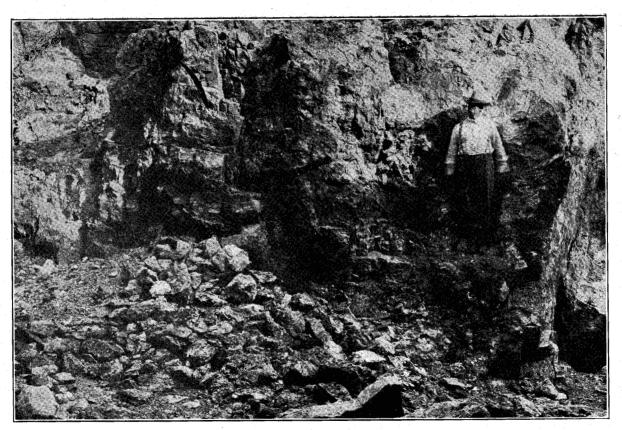

Underground Electric Haulage, American Briquette Co., Big Lump, Milam County


Exposure of Native Sulphur, Culberson County

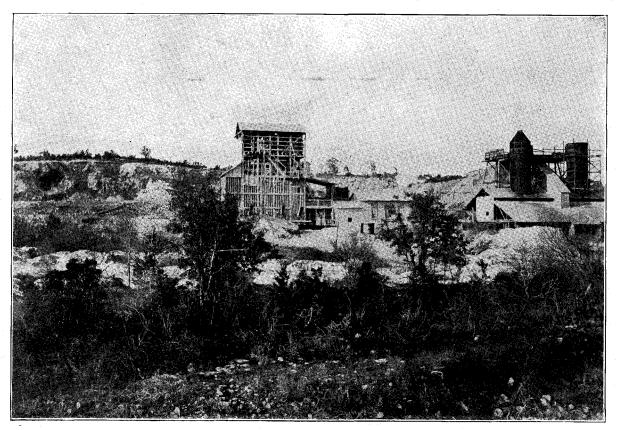

Sulphur Forced Out of Ground, Freeport Sulphur Co., Mouth of Brazos River

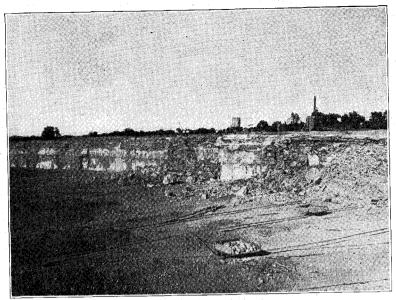


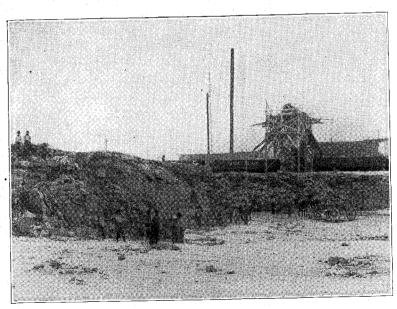
Plant of Elgin-Butler Brick & Tile Co., Butler, Bastrop County



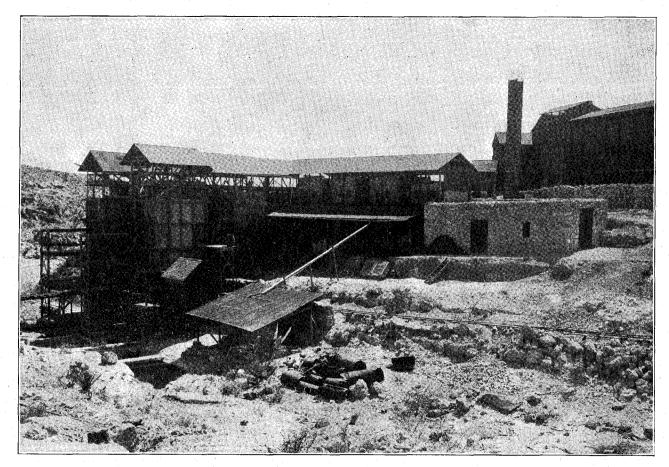
Red Granite Quarry, Granite Mountain, Burnet County

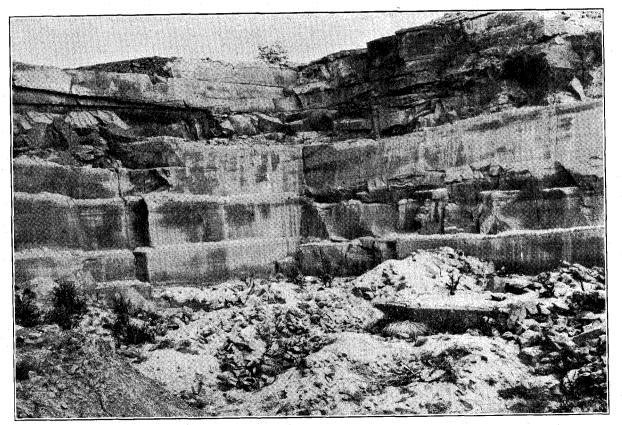


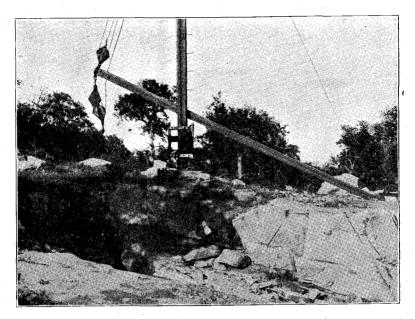

Radiographs made with Fergusonite from Barringer Hill, Llano County, Texas Wm. B. Phillips, June, 1914

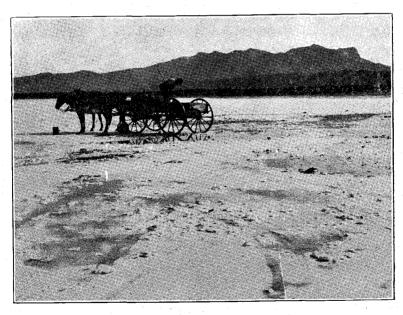

Exposure of Silver Ore, Mina Grande Cut, Shafter, Presidio County

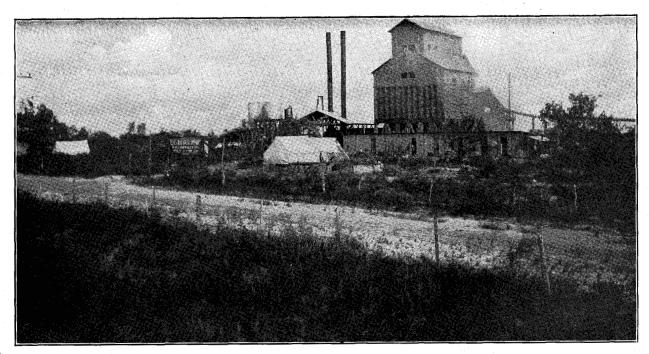
Limestone Quarry and Plant of Dittlinger Lime Co., near New Braunfels, Comal County


Limestone Quarry, Tiffin, Eastland County

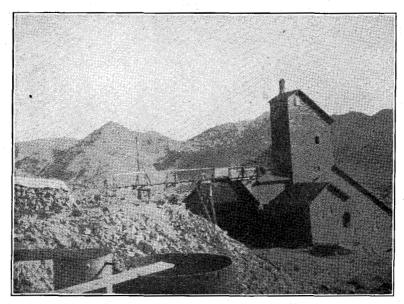

Limestone Quarry, Risley Bros., Jacksboro, Jacks County

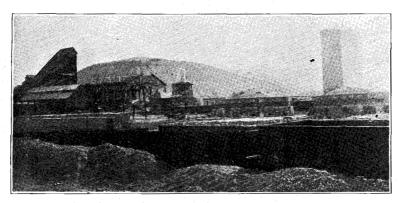

Twenty-five feet of Kaolin, near Leakey, Real County

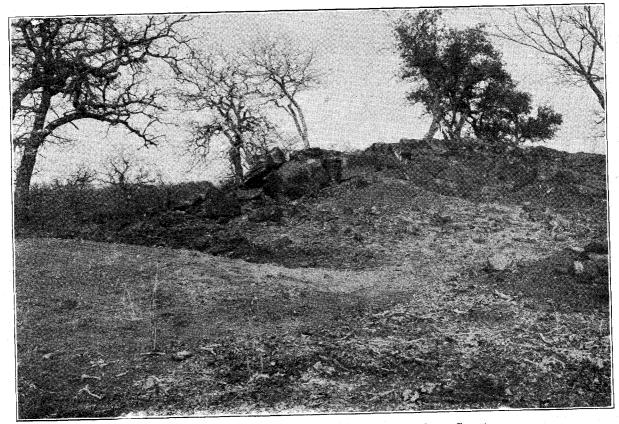

Quicksilver Furnaces-Marfa & Mariposa Mining Co., Terlingua, Brewster County

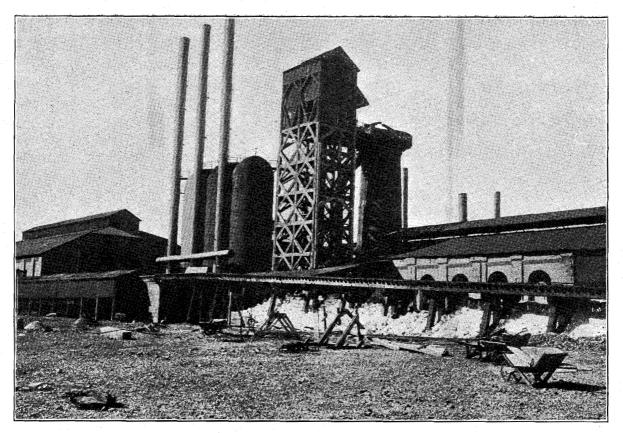

Red Sandstone Quarry near Barstow, Ward County

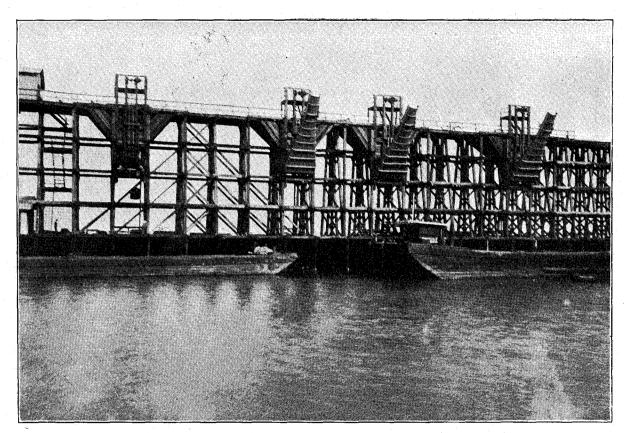
A Gray Granite Quarry, Llano County

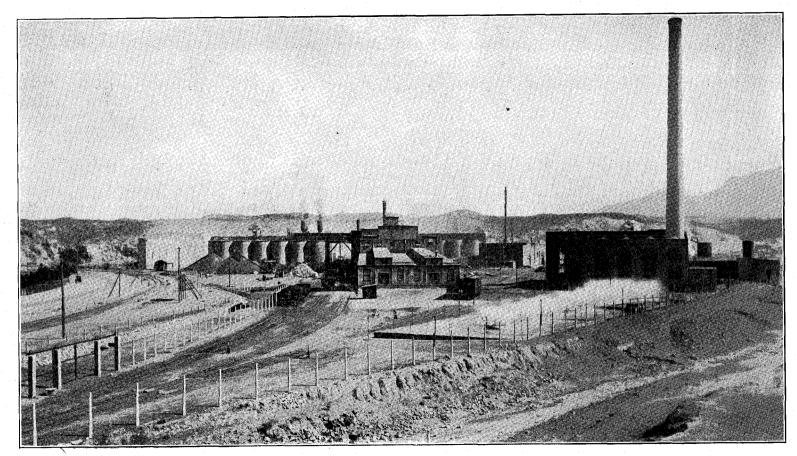

Loading Salt, Salt Basin, El Paso County

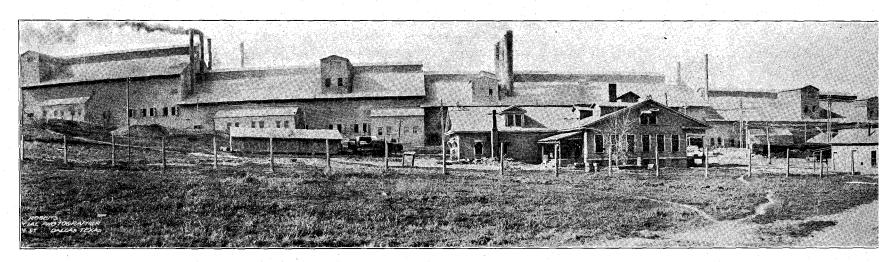

Works of Texas Trap Rock Co., Knippa, Uvalde County

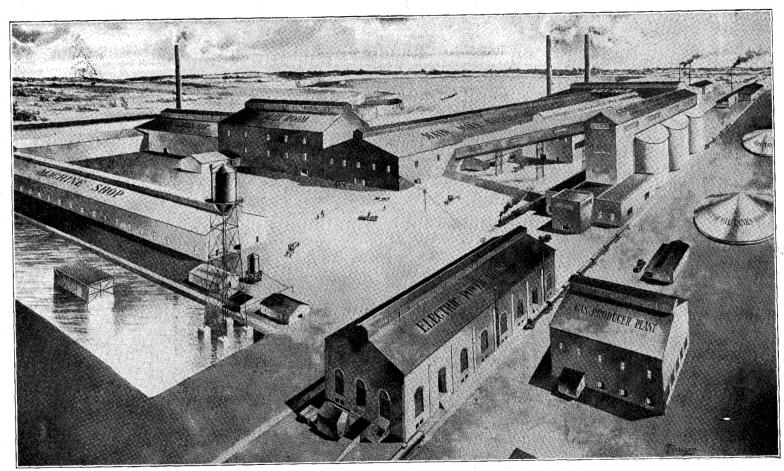

Interior View of Salt Works, B. W. Carrington & Co., Grand Saline, Van Zandt County

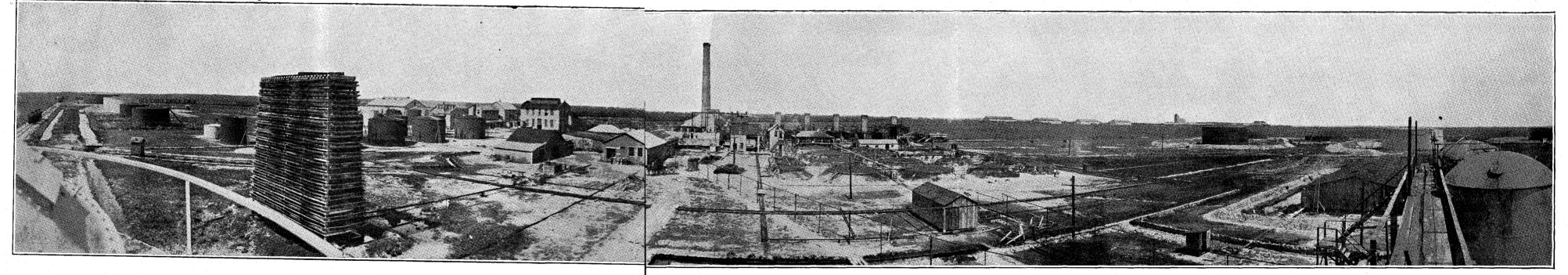

Mill for Concentrating Lead Ore, Quitman Mts., El Paso County

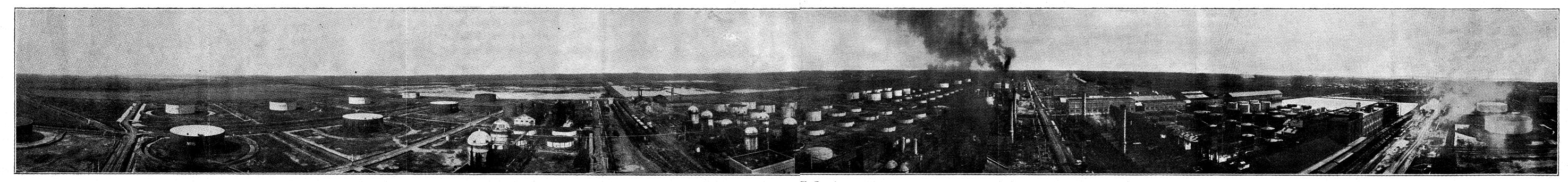

Plant of Thurber Brick Co., Thurber, Erath County

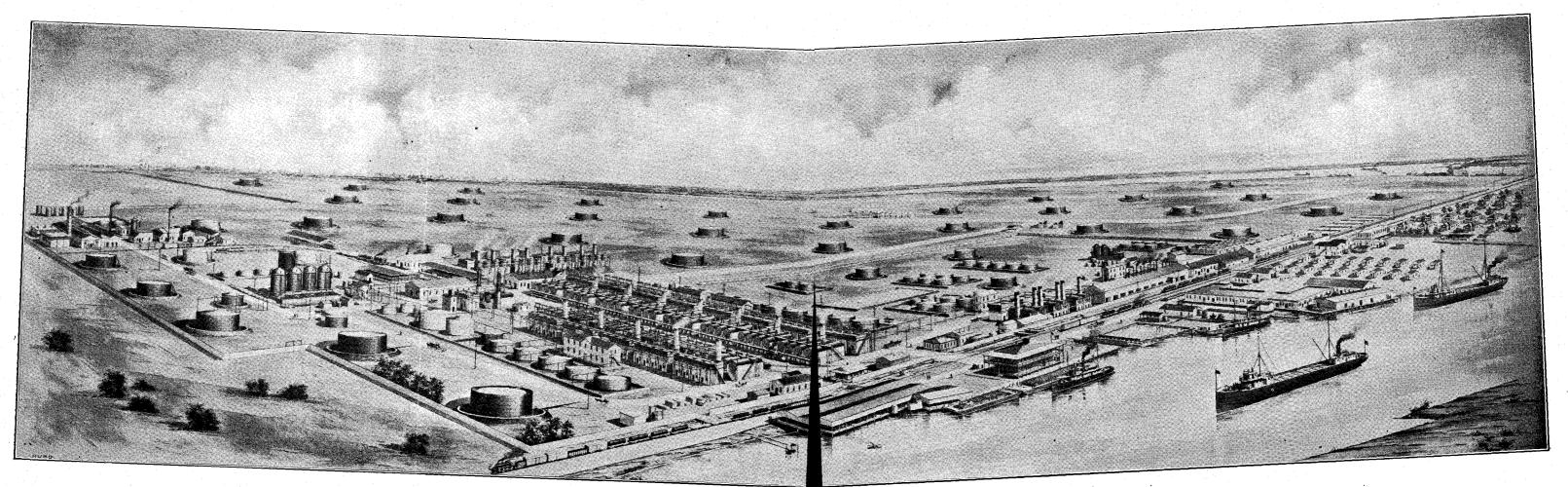

Outcrop of Magnetic Iron Ore, Iron Mountain, Llano County

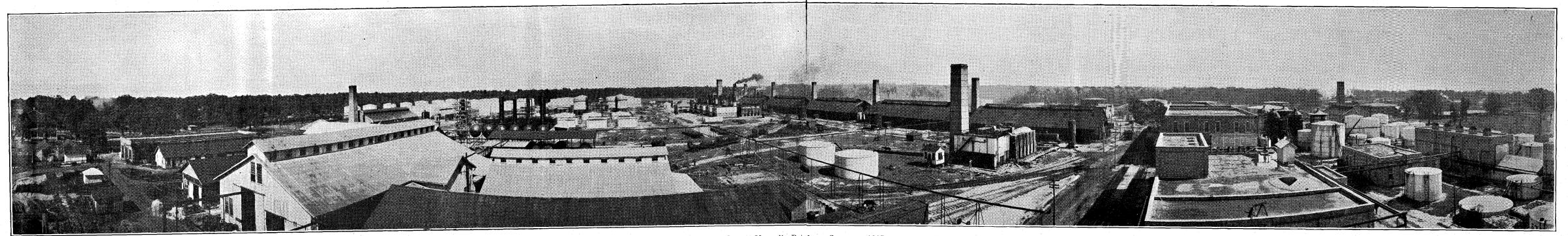

State Iron Furnace, Rusk, Cherokee County


Iron Ore Dock, Port Bolivar, Galveston Bay


Plant of S. W. Portland Cement Co., El Paso, Texas


Plant of Texas Portland Cement Co., near Dallas


Plant of San Antonio Portland Cement Co., near San Antonio


Texas City Refinery---Pierce-Fordyce Oil Association 1915,

Port Arthur (Texas) Oil Refinery of The Texas Company, 1915

Port Arthur Refinery, Texas, Gulf I Refining Company, 1915

Beaumont Refinery-Magnolia Petnleum Company, 1915

INDEX

Page.	
Acme Pressed Brick Co	97
Agate	11
Alba-Malakoff Lignite Co	
Alum, native	79
American Vichy Water, Mineral Wells, analysis of	94
	11
Asphalt, production and value of	6
Austin White Lime Co	31
Bailey, J. R. 1 Bat guano, composition of	93
Bay City Brick & Tile Co	72
Bear Grass Coal Co	65 65
Beaumont Brick Co	54
Belton Brick Co., tests of brick from	65
Blossom Mineral Water, analysis of	60
Bertetti Mine (lignite)	
Boone, D. R., Lone Star Lime Works	00
Border Gas Co., Laredo 2	43
Brazos Tile & Brick Co	25
Brenham Pressed Brick Co 2	40
Brick, tests on, counties:	
Bastrop	62
Bell	65
=	71
	91
	99
Cooke1	
Denton	
Ellis 1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
Gonzales	
Guadalupe	
Harrison	
Henderson	
Hopkins 1	
Jefferson	
Jones 1	55
Lamar 1	60
Matagorda 1	
Navarro 1	
Parker 1	
Rusk 2	
Tarrant 2	
Washington	
Williamson	40
Wilson	
Wise 2	
Brock's Mineral water, analysis of	
	63
Capitol Well, Austin, analysis of water of	3U
Carlsbad Mineral water, analysis of	20
Carr Mine (lignite)	37

	rage.	
Cement, materials for manufacture of: courties:		
Bexar	65	
Dallas	104	
El Paso		
	110	•
Cement plants, counties:		
Bexar	65	
Dallas		
El Paso		į
Cement, production and value of	3. 7	,
Central Quarry Co		
Champion Well, near Austin, analysis of water of		
Champion well, hear Austin, analysis of water of	9 70	,
Clays and Clay products, production and value of	3, 7-8	,
Clays, calcareous, analysis and tests of, counties:		
Bell	64-65	,
Gonzales		
Guadalupe		
Medina		
Wharton		
Williamson		
Wilson		
	410	١.
Clays, fire, analysis and tests of, counties:		
Bastrop		
Bexar		
Bowie	73	;
Brewster	77	7
Henderson	. 143-144	Ł
Limestone	166	;
Robertson		
Clays, ordinary, analysis and tests of, counties:		
Destroy		,
Bastrop		
Bexar		
Bowie		
Cherokee		
Dallas		
Delta		
Ellis	113	,
Erath	117-119	3
Grayson		
Harris		
Hunt	149)
Jefferson	153	3
Lamar		
McLennan	173	3
Marion	175	í
Milam		
Navarro		
Panola		
Shackelford	216	
Wise	250-251	
	200-201	٠.
Clays, pottery, analysis and tests of, counties:		
Bastrop		-
Bexar		
Bowie		_
Denton		
Falls		
Harrison	140)

	1	Page.
Henderson		143-144
Hopkins		147
Limestone		166
Nacogdoches		186
Parker	• • • • • • • • • • • • • • • • • • • •	197
Rusk	• • • • • • • • • • • • • • • • • • • •	209
Smith		217
Wilson	• • • • • • • • • • • • • • • • • • • •	$\dots 249$
Wood		253
Clays, sandy, analyses and test		
Bastrop		63
Bowie		74
Chambers		91
Cherokee		
Fort Bend		
Gregg		
Harris		
Harrison	· · · · · · · · · · · · · · · · · · ·	140
Houston		
LeePolk		163
Red River		
Tyler	• • • • • • • • • • • • • • • • • • • •	999
Clays, semi-refractory, counties:		202
Bexar		60
Denton		
Eastland	• • • • • • • • • • • • • • • • • • •	107
Fayette		
Gonzales		
Grimes		
Polk		
Robertson		
Tom Green		226
Webb		242
Wise		251
Cluck & Bro., E	· · · · · · · · · · · · · · · · · · ·	246
Coal, analyses of, counties:	rivity (1) and other properties	
Brewster		78
Burnet		83
Coleman		\dots 96
Eastland		
Erath		
Jack		
Maverick		
Montague		
Palo Pinto		
Parker		
Presidio Stephens		
Webb		
Wise		951
Young		255
Coal, production and value of.		
Cobb Brick Co.	• • • • • • • • • • • • • • • • • • • •	3, 8-9
Cobb Brick Co	• • • • • • • • • • • • • • • • • • • •	223
Consumers Lignite Co		99
Copper, production and value of	f :	3 9

	Page	
Corsicana Brick Co		183
Courschesne, A	• • • • • •	115
Denny Pottery Co		
Denton Brick & Tile Co		
D'Hanis Brick & Tile Co.	• • • • •	180
Derby Brick Mfg. Co	• • • • •	242
Developer's Oil & Gas Co	• • • • •	111
Distribution Time Co	• • • • •	98
Dittlinger Lime Co	••••	90
Dolomite, analyses and tests of, counties: Burnet		
		84
El Paso Gillespie		
Gillespie Tom Green		
Williamson	• • • • •	247
Dumble, E. T.		
Elevation, highest in State, El Capitan, Culberson county.	54	215
Elevations	and T	7117
Elgin-Butler Brick & Tile Co., tests of brick from	and	61
Elgin Standard Brick Co. tests of brick from		61
Everhart, E.		-
Ferris Press Brick Co		114
Fox, A. C., Lueders		
Fox. J. W. Stewarton		
Fuller's earth, production and value of		
Fuller's earth tests of counties:		
Burleson		81
Colorado		97
Fayette		121
Shelby		
Washington		241
Gainesville Pressed Brick Co		
Garbade, W. T		227
Gems and precious stones, production and value of		11
George & Co., R. B		246
Gibson water, Mineral Wells, analysis of		193
Globe Pressed Brick Co		114
Gold ore, counties:		
Brewster		78
Tom Green		226
Williamson		246
Granite, production and value of	1	1-12
Granite, tests of, counties:		
Burnet		82
El Paso		116
Llano	169)-171
Presidio	• • • • • •	202
Gravel and sand, production and value of		
Gulf States Brick Co		154
Gypsum, production and value of	1	2-13
Harper, H. W.		231
Harrington, H. H.		
Harris, F. A.	• • • • •	173
Henrietta Oil & Gas Co	• • • • •	95
Hot Wells, El Paso Co., analysis of water from	fnom	115 TT0
Hot Wells Sanitarium, Hubbard, Hill county, analysis of water	rom	.140

	Page	
Houston County Coal & Mfg. Co	.148,	$165 \\ 63 \\ 192$
		110
Iron ore, analysis of, counties: Anderson Cass Cherokee Gregg Harrison Henderson Llano Marion Marion Mason Morris Nacogdoches Rusk Shelby Upshur		9-90 93 133 141 144 169 176 177 185 187 209 216
Iron ore, area of, counties Anderson Cass Cherokee Gregg Harrison Henderson Marion Morris Smith Van Zandt Wood		90 93 134 141 145 176 185 218 237 253
Iron furnaces		93
Iron ore, production and value of	1	3-14
Iron, oxide paint		177
Kaolin: Edwards County (see Real County) Kennedy, James Kerr, A. B. & Sons Lamar Well, Mineral Wells, analysis of water from Lamar White Sulphur water, Mineral Wells, analysis of Lead, production and value of	204	-205 71 123 192 194
Lignite (brown coal), analyses of, counties:		
Angelina Atascosa Bastrop Bowie Brown		57 59 63 75 80
Caldwell Cass Cherokee Fayette	 	86 89 92 122
Freestone Harrison Hopkins Houston	146	126 141 147
Lee Leon		164

and the second of the second o	Page.
Limestone	167
Medina	180
Milam	182
Morris	186
Panola	196
Raines	203
Robertson	
Rusk	209
San Augustine	\dots 211
Titus	\dots 225
Trinity	\dots 232
Upshur	233
Van Zandt	$\dots 237$
Walker	239
Wood	$\dots 254$
Lignite production and value of	15-18
Lime, production and value of	18-19
Lime, white, analyses of, counties:	
Lime, white, analyses of, counties: Comal Travis	98
Travis	231
Williamson	247
Timestane analysis of counties:	
Anderson	36
Bexar	65-67
Bosque	73
Burnet	83-85
Caldwell	86
Callahan	87
Coleman	96
Comal	98
Coryell	100-101
Duval	110
Edwards	112-113
El Paso	115-117
Erath	
Fayette	123
Gillespie	128
Hamilton ,,	137
Hays	142
Jack	150
Jones	
Kaufman	157
Limestone	
McLennan	174
Montague	
Navarro	188
Palo Pinto	191
San Saba	$\dots 212$
Shackelford	$\dots 215$
Smith	$\dots 218$
Tarrant	223
Travis	227-230
Williamson	246-247
Wise	252
Limestone, bituminous, counties:	
Burnet	82
Pecos	198
Uvalde	234-235

	Pag	
Limestone, production and value of		19-20
Ling & Hughes, limestone		. 67
Lone Star Gas Co		. 94
Lone Star Lime Works	.	. 100
Lone Star Press Brick Co		. 114
Magnenat. L	.	. 231
Malakoff Pressed Brick Co		. 144
Mallet, J. W	• • • •	. 219
Mangum Mineral Water, analysis of	• • • •	12
Marble, analyses and tests of, counties:		
Brewster	• • • .	78-79
San Saba		. 213
Stephens	• • • •	. 221
Travis	• • • •	. 229
Marlin Hot Wells water, analysis of		. 119
Marshall Brick Co	• • • •	. 14U
Merrill, A.	• • • •	. 189 187
Mexia Quarry Co. Min-Ala Water, Mineral Wells, analysis of		195
Mineola, Wood county, analysis of water from		254
Mineral products, value of, 1882-1913		2-4
Mineral production, statistics of(Chapter	r)	41-51
mineral production, statistics of(Onaptor		11 01
Mineral waters, analyses of, see under the different counties:		90
List of	• • • •	. 20
Production and value of	10	. 41 9 105
Mineral Wells, Palo Pinto county, analyses of water from Mineral Wells Crushed Stone Co	19	191
Mineral Wells Splitz, water, analysis of		. 191 193
Morgan Mineral Water, analysis of		227
Moulton Sandstone Co		162
Mt. Marion Coal Mining Co. (coal)	 	$.\tilde{191}$
Natural gas, production and value of,		21-23
Natural gas, production and value of, counties:		
Clay		. 94
Erath		. 117
Gonzales		
Houston		
Limestone		
McMullen		
Mayerick		. 179
Montgomery		. 185
Nueces		
Red River		
Shackelford		. 215
Webb		243
Needham, R. H	. .	. 227
Nitrate of potash		79
Noyes, W. A		72
O. K. or Sleepy Water, Mineral Wells, analysis of		192
Olmos Coal Co.	• • • •	179
Opal	• • • •	11
Page & Co., Geo. H	• • • •	242
Palmer Pressed Brick Co.	• • • •	247
Paving brick	110	114
Pearls	. 117,	, 200 170
Petroleum, production and value of	. 11,	91.90 91.90
a outoroum, production and raide of		って-ひひ

			Lage.
Petrolum producing counties:			
Bexar			
Clay			
Hardin			
Harris		• • • • • • • •	139
Jack Jefferson	• • • • • • •	••••	151
Liberty	• • • • • • • •	• • • • • • • • •	154
Marion	• • • • • • • •	• • • • • • • •	176
Matagorda			178
Navarro			
Shackelford		• • • • • • •	215
Wichita			244
Williamson			248
Phosphate rock, Fayette county			122
Phosphatic pebbles, analysis of			69-70
Picton & Co., D. M., Beaumont			
Pioneer Brick Works			
Potash salts	• • • • • • • • • •		30-32
Potash salts, counties:			
Potter			201
Randall			
Quicksilver, production and value of			32-33
Read, W. T	• • • • • • • •	192,	193, 195
Red Mineral Springs water, analysis of			
Reiser Pressed Brick Co	• • • • • • • •	• • • • • • • •	242
Risley Bros., Jacksboro	• • • • • • • •	•••••	150
Round Rock White Lime Co			
Rusk Brick Co			
St. Mary's Mineral Water, analysis of			163
Salt. counties:			
Anderson			56
Mitchell			
Smith			
Van Zandt			
Salt, production and value of			33-34
San Antonio Lime Co			66
Sand and gravel, production and value o	f		34-35
Sand-lime brick, tests of, counties:			
Bexar			71
Coleman			
Comanche			99
Fannin			120
Fort Bend	• • • • • ,• • ,•		125
Sandstone, analysis and tests of, counties:			
Burnet			85-86
Callahan	. 		87
Duval			110
Fayette	• • • • • • • •		123
Jasper	• • • • • • •	• • • • • • • •	152-153
LampasasLavaca			
Tyler	• • • • • • • •		999.999
Ward			202-200
		 .	

	raso.	•
Sandstone, bituminous, analyses of, counties:		
Anderson		55
Cooke		100
Jasper		152
Montague		184
Panola	••••	EAP.
San Augustine Tyler	• • • • • •	210 929
Uvalde	• • • • •	235
Sandstone, production and value of	35	26
Sangcura Water, Mineral Wells, analysis of		193
Seguin Vitrified & Face Brick Co		135
	• • • • • •	100
Shale, analyses of, counties:		er
Bexar	• • • • • •	65
Dallas Shackelford	915.	216
Silver, production and value of	202	903
Shafter, Presidio county		111
Southland Mineral Water (Duffan), analysis of		118
Standard Brick Co	• • • • • •	114
Standard Coal Co		63
Star Clay Products Co. tests of brick from		69
Star Well Water Mineral Wells, analysis of		195
Steel furnace first built in Texas	133	-134
Strawn Coal Mining Co. (coal)		191
Strawn Oil Field, Palo Pinto county		195
Sulphur, production and value of	3	8-39
Sulphur, production of, counties:		
Brazoria		
Culberson		
Pecos		
Sunset Brick & Tile Co	129,	131
Taylor Brick Co.	• • • • • •	71
Terrell Hot Well, Bexar county, analysis of water from Texas Fire Brick Co., tests of brick from		1.63
Texas & Pacific Coal Co		117
Teves Portland Cement Co		104
Tevas Press Brick Co		114
Thrall Oil Field Williamson county		248
Thurber Brick Co		117
Tilson, P. S)8, 192,	194
Tin, production and value of	.39-40,	110
Tioga Sanitarium & Water Co., analysis of water from	• • • • • •	178
Topaz, Mason county		110
Trap rock, counties:		990
Travis		230 236
Uvalde		104
Trinity Portland Cement Co		11
Udden, J. A., Report on Oil and Gas Fields of Wichita ar	d Clav	•
counties		95
Potash in Texas Permian		201
Underwriters Laboratory		247
Waite, Willis W		116
•		

		rage.
Wise County Brick Co	of	251
$(\sigma_{i,j+1}^{(i)}, \ldots, \sigma_{i,j+1}, \sigma_{i,j+1}, \sigma_{i,j+1}) = (\sigma_{i,j+1}, \ldots, \sigma_{i,j+1}, \sigma_{i$		
And the same of th		
The second secon	A contract of the second contract of the second	
For the second		